Simplify the expression:

[tex]\[ (7.26)^{-9} \cdot (7.26)^{10} \][/tex]

A. [tex]\((7.26)^{19}\)[/tex]

B. [tex]\(7.26\)[/tex]

C. [tex]\(19\)[/tex]

D. [tex]\(1\)[/tex]



Answer :

Of course! Let's simplify the given mathematical expression step-by-step:

Given expression:
[tex]\[ (7.26)^{-9} \cdot (7.26)^{10} - 7.26^{19} \][/tex]

### Step 1: Simplify the product of terms with the same base using the properties of exponents.

We have:
[tex]\[ (7.26)^{-9} \cdot (7.26)^{10} \][/tex]

To simplify this, we use the property of exponents that states [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]. Therefore:
[tex]\[ (7.26)^{-9} \cdot (7.26)^{10} = 7.26^{-9+10} = 7.26^1 = 7.26 \][/tex]

### Step 2: Substitute back into the expression.

Now, the simplified form of [tex]\((7.26)^{-9} \cdot (7.26)^{10}\)[/tex] is [tex]\(7.26\)[/tex]. So, we substitute this back into the original expression:
[tex]\[ 7.26 - 7.26^{19} \][/tex]

### Step 3: Analyze the subtraction.

The expression is already in its simplest form, so we write:
[tex]\[ 7.26 - 7.26^{19} \][/tex]

### Final Result

The simplified form of the given expression is:
[tex]\[ 7.26 - 7.26^{19} \][/tex]

Numerically, this evaluates to approximately:
[tex]\[ 7.26 - 2.2792700996770468 \times 10^{16} \][/tex]

So, the result is approximately:
[tex]\[ (7.26, -2.2792700996770468 \times 10^{16}) \][/tex]