Find the midpoint of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] where [tex]\( A \)[/tex] has coordinates [tex]\((8, 5)\)[/tex] and [tex]\( B \)[/tex] has coordinates [tex]\((3, 7)\)[/tex].



Answer :

To find the midpoint of two points [tex]\( A \)[/tex] and [tex]\( B \)[/tex] with given coordinates, we can use the midpoint formula. The midpoint formula is:

[tex]\[ \text{Midpoint} = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Here, the coordinates of point [tex]\( A \)[/tex] are [tex]\( (8, 5) \)[/tex], which means [tex]\( x_1 = 8 \)[/tex] and [tex]\( y_1 = 5 \)[/tex]. The coordinates of point [tex]\( B \)[/tex] are [tex]\( (3, 7) \)[/tex], which means [tex]\( x_2 = 3 \)[/tex] and [tex]\( y_2 = 7 \)[/tex].

Substitute these values into the midpoint formula:

[tex]\[ \text{Midpoint} = \left( \frac{8 + 3}{2}, \frac{5 + 7}{2} \right) \][/tex]

First, calculate the [tex]\( x \)[/tex]-coordinate of the midpoint:

[tex]\[ \frac{8 + 3}{2} = \frac{11}{2} = 5.5 \][/tex]

Next, calculate the [tex]\( y \)[/tex]-coordinate of the midpoint:

[tex]\[ \frac{5 + 7}{2} = \frac{12}{2} = 6.0 \][/tex]

Therefore, the coordinates of the midpoint are:

[tex]\[ \left( 5.5, 6.0 \right) \][/tex]

So, the midpoint of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is [tex]\((5.5, 6.0)\)[/tex].