Find the midpoint of [tex]\( A \)[/tex] and [tex]\( B \)[/tex], where [tex]\( A \)[/tex] has coordinates [tex]\((-7,1)\)[/tex] and [tex]\( B \)[/tex] has coordinates [tex]\((3,-5)\)[/tex].



Answer :

To find the midpoint of two points [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we use the midpoint formula. The midpoint [tex]\(M\)[/tex] of two points [tex]\(A(x_1, y_1)\)[/tex] and [tex]\(B(x_2, y_2)\)[/tex] is given by:

[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Given the coordinates of point [tex]\(A\)[/tex] as [tex]\((-7, 1)\)[/tex] and point [tex]\(B\)[/tex] as [tex]\((3, -5)\)[/tex], we will substitute these values into the formula.

1. For the [tex]\(x\)[/tex]-coordinates:
[tex]\[ x_{\text{mid}} = \frac{-7 + 3}{2} \][/tex]

Calculate the sum inside the numerator:
[tex]\[ -7 + 3 = -4 \][/tex]

Next, divide by 2:
[tex]\[ x_{\text{mid}} = \frac{-4}{2} = -2 \][/tex]

2. For the [tex]\(y\)[/tex]-coordinates:
[tex]\[ y_{\text{mid}} = \frac{1 + (-5)}{2} \][/tex]

Calculate the sum inside the numerator:
[tex]\[ 1 + (-5) = 1 - 5 = -4 \][/tex]

Next, divide by 2:
[tex]\[ y_{\text{mid}} = \frac{-4}{2} = -2 \][/tex]

Thus, the coordinates of the midpoint [tex]\(M\)[/tex] are:

[tex]\[ M = (-2, -2) \][/tex]