Using the following national income accounting data, compute:

a. GDP.
b. NDP.
c. NI.

All figures are in billions.
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{Category} & Billions \\
\hline Compensation of employees & [tex]$\$[/tex] 215.2[tex]$ \\
\hline U.S. exports of goods and services & 18.8 \\
\hline Consumption of fixed capital & 11.8 \\
\hline Government purchases & 59.4 \\
\hline Taxes on production and imports & 14.4 \\
\hline Net private domestic investment & 52.1 \\
\hline Transfer payments & 13.9 \\
\hline U.S. imports of goods and services & 16.5 \\
\hline Personal taxes & 40.5 \\
\hline Net foreign factor income & 2.2 \\
\hline Personal consumption expenditures & 239.1 \\
\hline Statistical discrepancy & 0.0 \\
\hline
\end{tabular}

Instructions: Round your answers to 1 decimal place.

a. $[/tex]GDP = \[tex]$ \square$[/tex] billion
b. [tex]$NDP = \$[/tex] \square[tex]$ billion
c. $[/tex]NI = \[tex]$ \square$[/tex] billion



Answer :

Let's solve this step-by-step.

a. Gross Domestic Product (GDP)
GDP is calculated using the expenditure approach as:
[tex]\[ \text{GDP} = C + I + G + (X - M) \][/tex]
where:
- [tex]\( C \)[/tex] is Personal consumption expenditures
- [tex]\( I \)[/tex] is Gross private domestic investment (Net private domestic investment + Consumption of fixed capital)
- [tex]\( G \)[/tex] is Government purchases
- [tex]\( X \)[/tex] is U.S. exports of goods and services
- [tex]\( M \)[/tex] is U.S. imports of goods and services

Given the data:
[tex]\[ C = 239.1 \][/tex]
[tex]\[ I = 52.1 + 11.8 = 63.9 \][/tex]
[tex]\[ G = 59.4 \][/tex]
[tex]\[ X = 18.8 \][/tex]
[tex]\[ M = 16.5 \][/tex]

Let's plug these values into the GDP formula:
[tex]\[ \text{GDP} = 239.1 + 63.9 + 59.4 + (18.8 - 16.5) = 239.1 + 63.9 + 59.4 + 2.3 = 364.7 \][/tex]

So,
[tex]\[ \text{GDP} = \$364.7 \, \text{billion} \][/tex]

b. Net Domestic Product (NDP)
NDP is calculated as:
[tex]\[ \text{NDP} = \text{GDP} - \text{Consumption of fixed capital} \][/tex]

Given the data:
[tex]\[ \text{Consumption of fixed capital} = 11.8 \][/tex]

Let's plug in the values:
[tex]\[ \text{NDP} = 364.7 - 11.8 = 352.9 \][/tex]

So,
[tex]\[ \text{NDP} = \$352.9 \, \text{billion} \][/tex]

c. National Income (NI)
NI is calculated as:
[tex]\[ \text{NI} = \text{NDP} + \text{Net foreign factor income} - \text{Taxes on production and imports} \][/tex]

Given the data:
[tex]\[ \text{Net foreign factor income} = 2.2 \][/tex]
[tex]\[ \text{Taxes on production and imports} = 14.4 \][/tex]

Let's plug in the values:
[tex]\[ \text{NI} = 352.9 + 2.2 - 14.4 = 340.7 \][/tex]

So,
[tex]\[ \text{NI} = \$340.7 \, \text{billion} \][/tex]

Therefore, the answers are:
a. [tex]\( \text{GDP} = \$364.7 \, \text{billion} \)[/tex]
b. [tex]\( \text{NDP} = \$352.9 \, \text{billion} \)[/tex]
c. [tex]\( \text{NI} = \$340.7 \, \text{billion} \)[/tex]