Answer :
Let's solve this step-by-step.
a. Gross Domestic Product (GDP)
GDP is calculated using the expenditure approach as:
[tex]\[ \text{GDP} = C + I + G + (X - M) \][/tex]
where:
- [tex]\( C \)[/tex] is Personal consumption expenditures
- [tex]\( I \)[/tex] is Gross private domestic investment (Net private domestic investment + Consumption of fixed capital)
- [tex]\( G \)[/tex] is Government purchases
- [tex]\( X \)[/tex] is U.S. exports of goods and services
- [tex]\( M \)[/tex] is U.S. imports of goods and services
Given the data:
[tex]\[ C = 239.1 \][/tex]
[tex]\[ I = 52.1 + 11.8 = 63.9 \][/tex]
[tex]\[ G = 59.4 \][/tex]
[tex]\[ X = 18.8 \][/tex]
[tex]\[ M = 16.5 \][/tex]
Let's plug these values into the GDP formula:
[tex]\[ \text{GDP} = 239.1 + 63.9 + 59.4 + (18.8 - 16.5) = 239.1 + 63.9 + 59.4 + 2.3 = 364.7 \][/tex]
So,
[tex]\[ \text{GDP} = \$364.7 \, \text{billion} \][/tex]
b. Net Domestic Product (NDP)
NDP is calculated as:
[tex]\[ \text{NDP} = \text{GDP} - \text{Consumption of fixed capital} \][/tex]
Given the data:
[tex]\[ \text{Consumption of fixed capital} = 11.8 \][/tex]
Let's plug in the values:
[tex]\[ \text{NDP} = 364.7 - 11.8 = 352.9 \][/tex]
So,
[tex]\[ \text{NDP} = \$352.9 \, \text{billion} \][/tex]
c. National Income (NI)
NI is calculated as:
[tex]\[ \text{NI} = \text{NDP} + \text{Net foreign factor income} - \text{Taxes on production and imports} \][/tex]
Given the data:
[tex]\[ \text{Net foreign factor income} = 2.2 \][/tex]
[tex]\[ \text{Taxes on production and imports} = 14.4 \][/tex]
Let's plug in the values:
[tex]\[ \text{NI} = 352.9 + 2.2 - 14.4 = 340.7 \][/tex]
So,
[tex]\[ \text{NI} = \$340.7 \, \text{billion} \][/tex]
Therefore, the answers are:
a. [tex]\( \text{GDP} = \$364.7 \, \text{billion} \)[/tex]
b. [tex]\( \text{NDP} = \$352.9 \, \text{billion} \)[/tex]
c. [tex]\( \text{NI} = \$340.7 \, \text{billion} \)[/tex]
a. Gross Domestic Product (GDP)
GDP is calculated using the expenditure approach as:
[tex]\[ \text{GDP} = C + I + G + (X - M) \][/tex]
where:
- [tex]\( C \)[/tex] is Personal consumption expenditures
- [tex]\( I \)[/tex] is Gross private domestic investment (Net private domestic investment + Consumption of fixed capital)
- [tex]\( G \)[/tex] is Government purchases
- [tex]\( X \)[/tex] is U.S. exports of goods and services
- [tex]\( M \)[/tex] is U.S. imports of goods and services
Given the data:
[tex]\[ C = 239.1 \][/tex]
[tex]\[ I = 52.1 + 11.8 = 63.9 \][/tex]
[tex]\[ G = 59.4 \][/tex]
[tex]\[ X = 18.8 \][/tex]
[tex]\[ M = 16.5 \][/tex]
Let's plug these values into the GDP formula:
[tex]\[ \text{GDP} = 239.1 + 63.9 + 59.4 + (18.8 - 16.5) = 239.1 + 63.9 + 59.4 + 2.3 = 364.7 \][/tex]
So,
[tex]\[ \text{GDP} = \$364.7 \, \text{billion} \][/tex]
b. Net Domestic Product (NDP)
NDP is calculated as:
[tex]\[ \text{NDP} = \text{GDP} - \text{Consumption of fixed capital} \][/tex]
Given the data:
[tex]\[ \text{Consumption of fixed capital} = 11.8 \][/tex]
Let's plug in the values:
[tex]\[ \text{NDP} = 364.7 - 11.8 = 352.9 \][/tex]
So,
[tex]\[ \text{NDP} = \$352.9 \, \text{billion} \][/tex]
c. National Income (NI)
NI is calculated as:
[tex]\[ \text{NI} = \text{NDP} + \text{Net foreign factor income} - \text{Taxes on production and imports} \][/tex]
Given the data:
[tex]\[ \text{Net foreign factor income} = 2.2 \][/tex]
[tex]\[ \text{Taxes on production and imports} = 14.4 \][/tex]
Let's plug in the values:
[tex]\[ \text{NI} = 352.9 + 2.2 - 14.4 = 340.7 \][/tex]
So,
[tex]\[ \text{NI} = \$340.7 \, \text{billion} \][/tex]
Therefore, the answers are:
a. [tex]\( \text{GDP} = \$364.7 \, \text{billion} \)[/tex]
b. [tex]\( \text{NDP} = \$352.9 \, \text{billion} \)[/tex]
c. [tex]\( \text{NI} = \$340.7 \, \text{billion} \)[/tex]