Absolutely! Let's simplify the given expression using the distributive property step by step.
Expression: [tex]\(-8(-6x - 2u + 3)\)[/tex]
1. Distribute [tex]\(-8\)[/tex] across each term inside the parentheses:
- Multiply [tex]\(-8\)[/tex] by [tex]\(-6x\)[/tex]:
[tex]\[
-8 \times (-6x) = 48x
\][/tex]
- Multiply [tex]\(-8\)[/tex] by [tex]\(-2u\)[/tex]:
[tex]\[
-8 \times (-2u) = 16u
\][/tex]
- Multiply [tex]\(-8\)[/tex] by [tex]\(3\)[/tex]:
[tex]\[
-8 \times 3 = -24
\][/tex]
2. Combine all the terms obtained through distribution:
- So, the expression becomes:
[tex]\[
48x + 16u - 24
\][/tex]
Therefore, after removing the parentheses using the distributive property, the simplified form of the expression [tex]\(-8(-6x - 2u + 3)\)[/tex] is:
[tex]\[
48x + 16u - 24
\][/tex]