Evaluate the six trigonometric functions of [tex]\theta[/tex]. If the ratio is undefined, enter DNE.

[tex]\theta = \frac{3 \pi}{2}[/tex]

\begin{tabular}{|l|l|}
\hline
[tex]$\sin \theta = -1$[/tex] & [tex]$\csc \theta = \square$[/tex] \\
\hline
[tex]$\cos \theta = 0$[/tex] & [tex]$\sec \theta = \square$[/tex] \\
\hline
[tex]$\tan \theta = \text{DNE}$[/tex] & [tex]$\cot \theta = \square$[/tex] \\
\hline
\end{tabular}



Answer :

To evaluate the six trigonometric functions for [tex]\(\theta = \frac{3\pi}{2}\)[/tex], we need to analyze each function at this specific angle. Here's a step-by-step solution:

1. Sine Function ([tex]\(\sin \theta\)[/tex]):

[tex]\(\sin\left(\frac{3\pi}{2}\right) = -1\)[/tex]

2. Cosecant Function ([tex]\(\csc \theta\)[/tex]):

[tex]\[ \csc \theta = \frac{1}{\sin \theta} \implies \csc\left(\frac{3\pi}{2}\right) = \frac{1}{-1} = -1 \][/tex]

3. Cosine Function ([tex]\(\cos \theta\)[/tex]):

[tex]\(\cos\left(\frac{3\pi}{2}\right) = 0\)[/tex]

4. Secant Function ([tex]\(\sec \theta\)[/tex]):

[tex]\[ \sec \theta = \frac{1}{\cos \theta} \implies \sec\left(\frac{3\pi}{2}\right) = \frac{1}{0} \][/tex]
The value is undefined (DNE) because division by zero is not defined.

5. Tangent Function ([tex]\(\tan \theta\)[/tex]):

[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \implies \tan\left(\frac{3\pi}{2}\right) = \frac{-1}{0} \][/tex]
The value is undefined (DNE) because division by zero is not defined.

6. Cotangent Function ([tex]\(\cot \theta\)[/tex]):

[tex]\[ \cot \theta = \frac{1}{\tan \theta} \implies \cot\left(\frac{3\pi}{2}\right) \][/tex]
The value is undefined (DNE) since [tex]\(\tan\left(\frac{3\pi}{2}\right)\)[/tex] is undefined.

Based on these evaluations, we can fill in the table as follows:
[tex]\[ \begin{tabular}{|l|l|} \hline $\sin \theta=-1$ & $\csc \theta = -1$ \\ \hline $\cos \theta=0$ & $\sec \theta = \text{DNE}$ \\ \hline $\tan \theta=\text{DNE}$ & $\cot \theta = \text{DNE}$ \\ \hline \end{tabular} \][/tex]