Drag each tile into the correct box.
\begin{tabular}{|l|l|l|}
\hline
Lea & Distance (km) & Time (min) \\
\hline
A & 15 & 10 \\
\hline
B & 20 & 15 \\
\hline
C & 24 & 12 \\
\hline
D & 36 & 9 \\
\hline
E & 14 & 14 \\
\hline
\end{tabular}

[tex]\[
\operatorname{lng}
\][/tex]

[tex]\[
\log A
\][/tex]

[tex]\[
\log C
\][/tex]

[tex]\[
\log D
\][/tex]

[tex]\[
\lg E
\][/tex]

[tex]\[
\square \rightarrow \square \rightarrow \square \rightarrow \square
\][/tex]



Answer :

To solve this problem, we need to calculate the speeds for Lea A, B, C, D, and E by using the formula for speed:

[tex]\[ \text{Speed} = \frac{\text{Distance}}{\text{Time}} \][/tex]

Let's calculate the speed for each Lea step-by-step:

1. For Lea A:
[tex]\[ \text{Speed}_A = \frac{15 \text{ km}}{10 \text{ min}} = 1.5 \text{ km/min} \][/tex]

2. For Lea B:
[tex]\[ \text{Speed}_B = \frac{20 \text{ km}}{15 \text{ min}} = 1.3333 \text{ km/min} \][/tex]

3. For Lea C:
[tex]\[ \text{Speed}_C = \frac{24 \text{ km}}{12 \text{ min}} = 2.0 \text{ km/min} \][/tex]

4. For Lea D:
[tex]\[ \text{Speed}_D = \frac{36 \text{ km}}{9 \text{ min}} = 4.0 \text{ km/min} \][/tex]

5. For Lea E:
[tex]\[ \text{Speed}_E = \frac{14 \text{ km}}{14 \text{ min}} = 1.0 \text{ km/min} \][/tex]

These are the calculated speeds for each Lea:
[tex]\[ \text{Speed}_A = 1.5 \text{ km/min} \][/tex]
[tex]\[ \text{Speed}_B = 1.3333 \text{ km/min} \][/tex]
[tex]\[ \text{Speed}_C = 2.0 \text{ km/min} \][/tex]
[tex]\[ \text{Speed}_D = 4.0 \text{ km/min} \][/tex]
[tex]\[ \text{Speed}_E = 1.0 \text{ km/min} \][/tex]

Therefore, the speeds for each Lea in the correct order are [tex]\( 1.5, 1.3333, 2.0, 4.0, 1.0 \)[/tex] km/min.