Select the correct answer.

What is the factored form of [tex][tex]$b^3 - 1,000$[/tex][/tex]?

A. [tex]$(b+10)\left(b^2-10b+100\right)$[/tex]
B. [tex]$(b-10)\left(b^2+10b+100\right)$[/tex]
C. [tex][tex]$(b-10)\left(10b^2+b+100\right)$[/tex][/tex]
D. [tex]$(b+10)\left(10b^2-b+100\right)$[/tex]



Answer :

To factor the expression [tex]\( b^3 - 1000 \)[/tex], let's follow these detailed steps:

1. Recognize the Pattern:
We notice that [tex]\( b^3 - 1000 \)[/tex] is a difference of cubes. The general formula for the difference of cubes is:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]

2. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
In our case, [tex]\( a^3 = b^3 \)[/tex] because we start with [tex]\( b^3 \)[/tex]. For [tex]\(1000\)[/tex], we recognize [tex]\( 1000 = 10^3 \)[/tex]. Thus, we can set:
[tex]\[ a = b \quad \text{and} \quad b = 10 \][/tex]

3. Apply the Difference of Cubes Formula:
Substituting [tex]\(a\)[/tex] and [tex]\(b\)[/tex] into the formula we get:
[tex]\[ b^3 - 10^3 = (b - 10)\left(b^2 + b \cdot 10 + 10^2\right) \][/tex]

4. Simplify the Expression:
Let's simplify the factors within the parentheses:
[tex]\[ 10^2 = 100 \][/tex]
[tex]\[ b \cdot 10 = 10b \][/tex]
Hence, our expression within the parentheses becomes:
[tex]\[ b^2 + 10b + 100 \][/tex]

5. Form the Factored Expression:
The factored form of [tex]\( b^3 - 1000 \)[/tex] is:
[tex]\[ (b - 10)(b^2 + 10b + 100) \][/tex]

6. Identify the Correct Answer:
Comparing with the provided options:
[tex]\[ \text{B. } (b - 10)(b^2 + 10b + 100) \][/tex]

Therefore, the correct factored form is option B: [tex]\((b - 10)(b^2 + 10b + 100)\)[/tex].