Which equation represents the rectangular form of [tex]$r=4 \cos (\theta)$[/tex]?

A. [tex](x-2)^2 + y^2 = 4[/tex]
B. [tex](x+2)^2 + y^2 = 4[/tex]
C. [tex](x-2)^2 + y^2 = 0[/tex]
D. [tex](x+2)^2 + y^2 = 0[/tex]



Answer :

Let's convert the given polar equation [tex]\( r = 4 \cos(\theta) \)[/tex] to its rectangular form.

Recall the relationships between polar coordinates [tex]\((r, \theta)\)[/tex] and rectangular coordinates [tex]\((x, y)\)[/tex]:

1. [tex]\( x = r \cos(\theta) \)[/tex]
2. [tex]\( y = r \sin(\theta) \)[/tex]
3. [tex]\( r = \sqrt{x^2 + y^2} \)[/tex]
4. [tex]\(\cos(\theta) = \frac{x}{r}\)[/tex]

Now, let's substitute these relationships into the given polar equation:

[tex]\[ r = 4 \cos(\theta) \][/tex]

We can express [tex]\(\cos(\theta)\)[/tex] in terms of [tex]\(x\)[/tex] and [tex]\(r\)[/tex]:

[tex]\[ r = 4 \left(\frac{x}{r}\right) \][/tex]

Multiply both sides by [tex]\( r \)[/tex] to eliminate the fraction:

[tex]\[ r^2 = 4x \][/tex]

We know that [tex]\( r^2 = x^2 + y^2 \)[/tex]. Therefore:

[tex]\[ x^2 + y^2 = 4x \][/tex]

Now, let's rearrange this equation to match the standard form of a circle equation. To do so, we complete the square for the [tex]\( x \)[/tex] terms.

First, rewrite the equation:

[tex]\[ x^2 + y^2 = 4x \][/tex]

Subtract [tex]\( 4x \)[/tex] from both sides:

[tex]\[ x^2 - 4x + y^2 = 0 \][/tex]

To complete the square for [tex]\( x \)[/tex]:

[tex]\[ x^2 - 4x + y^2 = 0 \][/tex]

Add and subtract [tex]\( 4 \)[/tex] inside the equation:

[tex]\[ x^2 - 4x + 4 + y^2 = 4 \][/tex]

This can be written as:

[tex]\[ (x - 2)^2 + y^2 = 4 \][/tex]

Thus, the rectangular form of the given polar equation [tex]\( r = 4 \cos(\theta) \)[/tex] is:

[tex]\[ (x-2)^2 + y^2 = 4 \][/tex]

Therefore, the correct option is:

[tex]\[ (x-2)^2+y^2=4 \][/tex]