Question 1 (Multiple Choice Worth 3 points)
(Federal Income Taxes and Piecewise Functions MC)
The piecewise function represents the amount of taxes owed, [tex]\( f(x) \)[/tex], as a function of the taxable income, [tex]\( x \)[/tex]. Use the marginal tax rate chart or the piecewise function to answer the question.
Marginal Tax Rate Chart
\begin{tabular}{|l|l|}
\hline Tax Bracket & Marginal Tax Rate \\
\hline \[tex]$0-\$[/tex]10,275 & 10\% \\
\hline \[tex]$10,276-\$[/tex]41,175 & 12\% \\
\hline \[tex]$41,176-\$[/tex]89,075 & 22\% \\
\hline \[tex]$89,076-\$[/tex]170,050 & 24\% \\
\hline \[tex]$170,051-\$[/tex]215,950 & 32\% \\
\hline \[tex]$215,951-\$[/tex]539,900 & 35\% \\
\hline
\end{tabular}
[tex]\[
f(x)=\left\{
\begin{array}{ll}
0.10x, & 0 \leq x \leq 10,275 \\
0.12x - 205.50, & 10,276 \leq x \leq 41,175 \\
0.22x - 4,323.00, & 41,176 \leq x \leq 89,075 \\
0.24x - 6,104.50, & 89,076 \leq x \leq 170,050 \\
0.32x - 19,708.50, & 170,051 \leq x \leq 215,950 \\
0.35x - 26,187.00, & 215,951 \leq x \leq 539,900 \\
0.37x - 36,985.00, & x \geq 539,901
\end{array}
\right.
\][/tex]
Determine the effective tax rate for a taxable income of \$63,425. Round the final answer to the nearest hundredth.
A. 10\%
B. 14.67\%