The dye dilution method is used to measure cardiac output with 6 mg of dye. The dye concentrations, in mg/L, are modeled by [tex]c(t) = 27t e^{-0.9t}, \quad 0 \leq t \leq 10[/tex], where [tex]t[/tex] is measured in seconds. Find the cardiac output. (Hint: Integration by parts is required. Round your answer to four decimal places.)

0.2001 × [tex]L/s[/tex]



Answer :

To find the cardiac output using the dye dilution method, we are provided with a dye concentration function [tex]\( c(t) = 27t e^{-0.9t} \)[/tex], which models the dye concentration over time [tex]\( t \)[/tex] in seconds. The cardiac output in liters per second is given by [tex]\( 0.2001 \times \int_{0}^{10} c(t) \, dt \)[/tex].

Let's calculate this step by step:

1. Set up the integral:

We need to integrate the given function over the interval from 0 to 10:
[tex]\[ \int_{0}^{10} 27t e^{-0.9t} \, dt. \][/tex]

2. Use integration by parts:

To integrate [tex]\( 27t e^{-0.9t} \)[/tex], we apply integration by parts. The formula for integration by parts is:
[tex]\[ \int u \, dv = uv - \int v \, du, \][/tex]
where [tex]\( u = t \)[/tex] and [tex]\( dv = 27 e^{-0.9t} \, dt \)[/tex].

Differentiate and integrate:
[tex]\[ du = dt, \][/tex]
[tex]\[ v = \int 27 e^{-0.9t} \, dt = 27 \left( -\frac{1}{0.9} e^{-0.9t} \right) = -30 e^{-0.9t}. \][/tex]

3. Substitute into the integration by parts formula:

Now, substitute [tex]\( u = t \)[/tex], [tex]\( du = dt \)[/tex], [tex]\( v = -30 e^{-0.9t} \)[/tex], and [tex]\( dv = 27 e^{-0.9t} \, dt \)[/tex]:
[tex]\[ \int 27t e^{-0.9t} \, dt = t \cdot (-30 e^{-0.9t}) - \int (-30 e^{-0.9t}) \, dt. \][/tex]

Simplify both terms:
[tex]\[ = -30t e^{-0.9t} + 30 \int e^{-0.9t} \, dt. \][/tex]

Integrate [tex]\( \int e^{-0.9t} \, dt \)[/tex]:
[tex]\[ \int e^{-0.9t} \, dt = -\frac{1}{0.9} e^{-0.9t} = -\frac{10}{9} e^{-0.9t}. \][/tex]

4. Complete the integration:

Plug this back into our expression:
[tex]\[ \int 27t e^{-0.9t} \, dt = -30t e^{-0.9t} + 30 \left(-\frac{10}{9} e^{-0.9t}\right). \][/tex]

Simplify:
[tex]\[ = -30t e^{-0.9t} - \frac{300}{9} e^{-0.9t}. \][/tex]

Further simplify:
[tex]\[ = -30t e^{-0.9t} - \frac{100}{3} e^{-0.9t}. \][/tex]

Evaluate this integral from 0 to 10:
[tex]\[ \left[ -30t e^{-0.9t} - \frac{100}{3} e^{-0.9t} \right]_{0}^{10}. \][/tex]

5. Evaluate the definite integral:

Calculate at the upper limit [tex]\( t = 10 \)[/tex]:
[tex]\[ -30(10) e^{-0.9(10)} - \frac{100}{3} e^{-0.9(10)} = -300 e^{-9} - \frac{100}{3} e^{-9}. \][/tex]

Simplify:
[tex]\[ = -\left( 300 + \frac{100}{3} \right)e^{-9}. \][/tex]

Calculate at the lower limit [tex]\( t = 0 \)[/tex]:
[tex]\[ -30(0) e^{-0.9(0)} - \frac{100}{3} e^{-0.9(0)} = 0 - \frac{100}{3}. \][/tex]

6. Combine the results:

[tex]\[ \left[ -\left( 300 + \frac{100}{3} \right)e^{-9} \right] - \left[ 0 - \frac{100}{3} \right] = -\left( \frac{900}{3} + \frac{100}{3} \right)e^{-9} + \frac{100}{3}. \][/tex]

Simplify further:
[tex]\[ -\frac{1000}{3} e^{-9} + \frac{100}{3}. \][/tex]

7. Approximate solution:

Evaluate [tex]\( e^{-9} \approx 1.2341 \times 10^{-4} \)[/tex]

Thus,
[tex]\[ -\frac{1000}{3} \times 1.2341 \times 10^{-4} + \frac{100}{3} = -0.4113 + 33.3333 \approx 32.9220. \][/tex]

8. Cardiac output:

Multiply by the given coefficient [tex]\( 0.2001 \)[/tex]:
[tex]\[ 0.2001 \times 32.9220 \approx 6.5869. \][/tex]

Thus, the cardiac output is approximately [tex]\( 6.5869 \)[/tex] liters per second (rounded to four decimal places).