Select the correct answer.

Bob has taken out a loan of [tex]$\$[/tex]15,000[tex]$ for a term of 4 years at an interest rate of $[/tex]6.5\%[tex]$. Using the amortization ratio provided, what will be the total finance charge over the course of his loan?

\begin{tabular}{|l|l|l|l|l|l|}
\hline
\multicolumn{5}{|c|}{ Monthly Payment per $[/tex]\[tex]$1,000$[/tex] of Principal } \\
\hline
Rate & 1 Year & 2 Years & 3 Years & 4 Years & 5 Years \\
\hline
[tex]$6.5\%$[/tex] & [tex]$\$[/tex]86.30[tex]$ & $[/tex]\[tex]$44.55$[/tex] & [tex]$\$[/tex]30.65[tex]$ & $[/tex]\[tex]$23.71$[/tex] & [tex]$\$[/tex]19.57[tex]$ \\
\hline
$[/tex]7.05\%[tex]$ & $[/tex]\[tex]$85.53$[/tex] & [tex]$\$[/tex]44.77[tex]$ & $[/tex]\[tex]$30.88$[/tex] & [tex]$\$[/tex]23.95[tex]$ & $[/tex]\[tex]$19.80$[/tex] \\
\hline
[tex]$7.5\%$[/tex] & [tex]$\$[/tex]86.76[tex]$ & $[/tex]\[tex]$45.00$[/tex] & [tex]$\$[/tex]31.11[tex]$ & $[/tex]\[tex]$24.18$[/tex] & [tex]$\$[/tex]20.04[tex]$ \\
\hline
$[/tex]8.0\%[tex]$ & $[/tex]\[tex]$86.99$[/tex] & [tex]$\$[/tex]45.23[tex]$ & $[/tex]\[tex]$31.34$[/tex] & [tex]$\$[/tex]24.41[tex]$ & $[/tex]\[tex]$20.28$[/tex] \\
\hline
[tex]$8.5\%$[/tex] & [tex]$\$[/tex]87.22[tex]$ & $[/tex]\[tex]$45.46$[/tex] & [tex]$\$[/tex]31.57[tex]$ & $[/tex]\[tex]$24.65$[/tex] & [tex]$\$[/tex]20.52[tex]$ \\
\hline
$[/tex]9.0\%[tex]$ & $[/tex]\[tex]$87.45$[/tex] & [tex]$\$[/tex]45.63[tex]$ & $[/tex]\[tex]$31.80$[/tex] & [tex]$\$[/tex]24.89[tex]$ & $[/tex]\[tex]$20.76$[/tex] \\
\hline
\end{tabular}

A. \[tex]$535,565
B. \$[/tex]597,500
C. \[tex]$1,682.40
D. \$[/tex]2,071.20
E. \$17,071.20



Answer :

Sure, let's solve this problem step-by-step explaining how each element is found:

### 1. Determine the Monthly Payment
The amount borrowed is [tex]$15,000 and the term of the loan is 4 years. The table provided shows that for a 4-year loan at an interest rate of 6.5%, the monthly payment per $[/tex]1,000 of the principal is \[tex]$23.71. Calculation: To find the monthly payment, we first calculate how much Bob pays per month for the entire loan amount. \[ \text{Monthly Payment} = \left(\frac{\$[/tex]15,000}{\[tex]$1,000}\right) \times \$[/tex]23.71 = 15 \times \[tex]$23.71 = \$[/tex]355.65
\]

### 2. Determine the Total Payment over the Term of the Loan
Bob will make this monthly payment over 4 years, which amounts to:
[tex]\[ 4 \, \text{years} \times 12 \, \text{months/year} = 48 \, \text{months} \][/tex]

Calculation:
The total amount Bob will have paid by the end of the loan term is:
[tex]\[ \text{Total Payment} = \text{Monthly Payment} \times \text{Total Number of Payments} = \$355.65 \times 48 = \$17,071.20 \][/tex]

### 3. Calculate the Total Finance Charge
The finance charge is the total amount paid minus the amount borrowed. Thus, it represents the cost of borrowing the money.

Calculation:
[tex]\[ \text{Total Finance Charge} = \text{Total Payment} - \text{Loan Amount} = \$17,071.20 - \$15,000 = \$2,071.20 \][/tex]

### Conclusion
After completing all the above calculations, the total finance charge over the course of Bob's loan is \[tex]$2,071.20. Therefore, the correct answer is: D. \$[/tex]2,071.20