\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-2 & 21 \\
\hline
-1 & 10 \\
\hline
0 & 5 \\
\hline
1 & 6 \\
\hline
2 & 13 \\
\hline
\end{tabular}

Which quadratic function is represented by the table?

A. [tex]$f(x) = 3x^2 + 2x - 5$[/tex]

B. [tex]$f(x) = 3x^2 - 2x + 5$[/tex]

C. [tex]$f(x) = 2x^2 + 3x - 5$[/tex]

D. [tex]$f(x) = 2x^2 - 2x + 5$[/tex]



Answer :

To determine which quadratic function is represented by the table, we need to evaluate each function at the given [tex]\( x \)[/tex] values and compare the results to the [tex]\( f(x) \)[/tex] values in the table.

The given [tex]\( x \)[/tex] values are [tex]\(-2, -1, 0, 1, 2\)[/tex] and the corresponding [tex]\( f(x) \)[/tex] values are [tex]\( 21, 10, 5, 6, 13 \)[/tex].

Let's evaluate each function one by one:

Option 1: [tex]\( f(x) = 3x^2 + 2x - 5 \)[/tex]

[tex]\[ \begin{aligned} & f(-2) = 3(-2)^2 + 2(-2) - 5 = 3 \cdot 4 - 4 - 5 = 12 - 4 - 5 = 3 \\ & f(-1) = 3(-1)^2 + 2(-1) - 5 = 3 \cdot 1 - 2 - 5 = 3 - 2 - 5 = -4 \\ & f(0) = 3(0)^2 + 2(0) - 5 = 0 + 0 - 5 = -5 \\ & f(1) = 3(1)^2 + 2(1) - 5 = 3 \cdot 1 + 2 - 5 = 3 + 2 - 5 = 0 \\ & f(2) = 3(2)^2 + 2(2) - 5 = 3 \cdot 4 + 4 - 5 = 12 + 4 - 5 = 11 \\ \end{aligned} \][/tex]

The values do not match the table values. Therefore, Option 1 is incorrect.

Option 2: [tex]\( f(x) = 3x^2 - 2x + 5 \)[/tex]

[tex]\[ \begin{aligned} & f(-2) = 3(-2)^2 - 2(-2) + 5 = 3 \cdot 4 + 4 + 5 = 12 + 4 + 5 = 21 \\ & f(-1) = 3(-1)^2 - 2(-1) + 5 = 3 \cdot 1 + 2 + 5 = 3 + 2 + 5 = 10 \\ & f(0) = 3(0)^2 - 2(0) + 5 = 0 + 0 + 5 = 5 \\ & f(1) = 3(1)^2 - 2(1) + 5 = 3 \cdot 1 - 2 + 5 = 3 - 2 + 5 = 6 \\ & f(2) = 3(2)^2 - 2(2) + 5 = 3 \cdot 4 - 4 + 5 = 12 - 4 + 5 = 13 \\ \end{aligned} \][/tex]

The values match the table values perfectly. Therefore, Option 2 is correct.

Option 3: [tex]\( f(x) = 2x^2 + 3x - 5 \)[/tex]

[tex]\[ \begin{aligned} & f(-2) = 2(-2)^2 + 3(-2) - 5 = 2 \cdot 4 - 6 - 5 = 8 - 6 - 5 = -3 \\ & f(-1) = 2(-1)^2 + 3(-1) - 5 = 2 \cdot 1 - 3 - 5 = 2 - 3 - 5 = -6 \\ & f(0) = 2(0)^2 + 3(0) - 5 = 0 + 0 - 5 = -5 \\ & f(1) = 2(1)^2 + 3(1) - 5 = 2 \cdot 1 + 3 - 5 = 2 + 3 - 5 = 0 \\ & f(2) = 2(2)^2 + 3(2) - 5 = 2 \cdot 4 + 6 - 5 = 8 + 6 - 5 = 9 \\ \end{aligned} \][/tex]

The values do not match the table values. Therefore, Option 3 is incorrect.

Option 4: [tex]\( f(x) = 2x^2 - 2x + 5 \)[/tex]

[tex]\[ \begin{aligned} & f(-2) = 2(-2)^2 - 2(-2) + 5 = 2 \cdot 4 + 4 + 5 = 8 + 4 + 5 = 17 \\ & f(-1) = 2(-1)^2 - 2(-1) + 5 = 2 \cdot 1 + 2 + 5 = 2 + 2 + 5 = 9 \\ & f(0) = 2(0)^2 - 2(0) + 5 = 0 + 0 + 5 = 5 \\ & f(1) = 2(1)^2 - 2(1) + 5 = 2 \cdot 1 - 2 + 5 = 2 - 2 + 5 = 5 \\ & f(2) = 2(2)^2 - 2(2) + 5 = 2 \cdot 4 - 4 + 5 = 8 - 4 + 5 = 9 \\ \end{aligned} \][/tex]

The values do not match the table values. Therefore, Option 4 is incorrect.

Thus, the quadratic function represented by the table is:
[tex]\[ f(x) = 3x^2 - 2x + 5 \][/tex]