Which of the following is equivalent to [tex] -4(2p - 5q) [/tex]?

A. [tex] -8p - 5q [/tex]

B. [tex] -8p + 20q [/tex]

C. [tex] -6p - 9q [/tex]

D. [tex] -6p + 20q [/tex]



Answer :

To simplify the expression [tex]\(-4(2p - 5q)\)[/tex], you need to distribute the [tex]\(-4\)[/tex] to both terms inside the parentheses.

Here are the steps:

1. Distribute [tex]\(-4\)[/tex] to [tex]\(2p\)[/tex]:
[tex]\[ -4 \times 2p = -8p \][/tex]

2. Distribute [tex]\(-4\)[/tex] to [tex]\(-5q\)[/tex]:
[tex]\[ -4 \times (-5q) = +20q \][/tex]

Combining these results, the simplified expression is:
[tex]\[ -8p + 20q \][/tex]

Thus, the option that is equivalent to [tex]\(-4(2p - 5q)\)[/tex] is:
[tex]\[ \boxed{-8p + 20q} \][/tex]

Out of the provided options, the correct answer is:
[tex]\[ -8p + 20q \][/tex]