Question 5 (Multiple Choice Worth 5 Points)

(Addition and Subtraction of Linear Expressions)

Add the expressions:

[tex]\[ \left( -6 - \frac{1}{2} p \right) + \left( \frac{3}{4} p - 9 \right) \][/tex]

A. [tex]\[ \frac{4}{8} p - 3 \][/tex]

B. [tex]\[ \frac{2}{6} p + (-15) \][/tex]

C. [tex]\[ -\frac{2}{4} p + (-3) \][/tex]

D. [tex]\[ \frac{1}{4} p - 15 \][/tex]



Answer :

Alright, let's solve this step-by-step.

We need to add the expressions [tex]\(-6 - \frac{1}{2} p\)[/tex] and [tex]\(\frac{3}{4} p - 9\)[/tex].

Step 1: Combine like terms

1. Start with the given expressions:
[tex]\[ \left(-6 - \frac{1}{2} p\right) + \left(\frac{3}{4} p - 9\right) \][/tex]

2. Group the constants and the terms containing [tex]\( p \)[/tex]:
[tex]\[ -6 - 9 + \left( \frac{3}{4} p - \frac{1}{2} p \right) \][/tex]

3. Simplify the constants:
[tex]\[ -6 - 9 = -15 \][/tex]

4. Combine the coefficients of [tex]\( p \)[/tex]:
[tex]\[ \frac{3}{4} p - \frac{1}{2} p \][/tex]

Note that [tex]\(\frac{1}{2} p\)[/tex] can be rewritten as [tex]\(\frac{2}{4} p\)[/tex], giving:
[tex]\[ \frac{3}{4} p - \frac{2}{4} p = \frac{1}{4} p \][/tex]

5. Add the simplified constant and the simplified [tex]\( p \)[/tex] term:
[tex]\[ -15 + \frac{1}{4} p \][/tex]

Step 2: Choose the correct multiple-choice answer

From our simplifications, we have:
[tex]\[ \frac{1}{4} p - 15 \][/tex]

Step 3: Match it with one of the provided options:

1. [tex]\(\frac{4}{8} p - 3\)[/tex] simplifies to [tex]\(\frac{1}{2} p - 3\)[/tex]
2. [tex]\(\frac{2}{6} p + (-15)\)[/tex] simplifies to [tex]\(\frac{1}{3} p - 15\)[/tex]
3. [tex]\(-\frac{2}{4} p + (-3)\)[/tex] simplifies to [tex]\(-\frac{1}{2} p - 3\)[/tex]
4. [tex]\(\frac{1}{4} p - 15\)[/tex]

We see that the correct answer matches the fourth option:
[tex]\[ \boxed{4} \][/tex]

Thus, the answer is:
[tex]\[ 4 \][/tex]

This completes the solution!