Select the correct answer.

Using the properties of exponents and logarithms, find the value of [tex]$x$[/tex] in [tex]$19 + 2 \ln x = 25$[/tex].

A. 0.05
B. 1.93
C. 3
D. 20.09



Answer :

To find the value of [tex]\( x \)[/tex] in the equation [tex]\( 19 + 2 \ln x = 25 \)[/tex], follow these steps:

1. Isolate the logarithmic term:
[tex]\[ 19 + 2 \ln x = 25 \][/tex]
First, subtract 19 from both sides to move 19 to the other side of the equation:
[tex]\[ 2 \ln x = 25 - 19 \][/tex]
Simplifying the right side gives:
[tex]\[ 2 \ln x = 6 \][/tex]

2. Solve for the natural logarithm:
Divide both sides by 2 to isolate [tex]\( \ln x \)[/tex]:
[tex]\[ \ln x = \frac{6}{2} \][/tex]
Simplifying gives:
[tex]\[ \ln x = 3 \][/tex]

3. Exponentiate to remove the natural logarithm:
Recall that [tex]\( \ln x \)[/tex] is the natural logarithm, which has the base [tex]\( e \)[/tex]. To solve for [tex]\( x \)[/tex], exponentiate both sides with base [tex]\( e \)[/tex]:
[tex]\[ x = e^3 \][/tex]

4. Calculate the numerical value:
The value of [tex]\( e^3 \)[/tex] is approximately:
[tex]\[ 20.085536923187668 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] that solves the equation [tex]\( 19 + 2 \ln x = 25 \)[/tex] is closest to:

D. 20.09