The density of gold is [tex]19.3 \, \text{g/cm}^3[/tex]. What is the volume of a 13 g gold nugget?

A. [tex]0.25 \, \text{cm}^3[/tex]
B. [tex]0.67 \, \text{cm}^3[/tex]
C. [tex]1.48 \, \text{cm}^3[/tex]
D. [tex]2.50 \, \text{cm}^3[/tex]

(Note: Density formula [tex]D=\frac{m}{v}[/tex])



Answer :

To determine the volume of a gold nugget with a mass of 13 grams and a density of 19.3 g/cm³, we can use the relationship between density (D), mass (m), and volume (v) given by the formula:

[tex]\[ D = \frac{m}{v} \][/tex]

First, we need to isolate the volume (v) in the formula. To do this, we rearrange the formula to solve for volume:

[tex]\[ v = \frac{m}{D} \][/tex]

Now, we substitute the given values for mass (m = 13 grams) and density (D = 19.3 g/cm³):

[tex]\[ v = \frac{13 \, \text{g}}{19.3 \, \text{g/cm}^3} \][/tex]

Performing the division:

[tex]\[ v = 0.6735751295336787 \, \text{cm}^3 \][/tex]

Therefore, the volume of a 13 g gold nugget with a density of 19.3 g/cm³ is approximately 0.674 cm³. Among the given options, the closest value is:

[tex]\[ 0.67 \, \text{cm}^3 \][/tex]

So, the correct answer is:

[tex]\[ 0.67 \, \text{cm}^3 \][/tex].