\begin{tabular}{|c|r|r|r|r|r|r|r|r|r|r|}
\hline
[tex]$x$[/tex] & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
[tex]$f(x)$[/tex] & 48 & 8 & 53 & 28 & 44 & 96 & 2 & 33 & 71 & 47 \\
\hline
\end{tabular}

Evaluate [tex]$f(8)$[/tex]:
[tex]\[ f(8) = \square \][/tex]

Solve [tex]$f(x) = 2$[/tex]:
[tex]\[ x = \square \][/tex]



Answer :

Let's address each part of the question step by step.

### Part 1: Evaluate [tex]\( f(8) \)[/tex]

The table provides values for the function [tex]\( f(x) \)[/tex] at specific points [tex]\( x \)[/tex]. To find [tex]\( f(8) \)[/tex], we look at the given table and find the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 8 \)[/tex].

From the table:
[tex]\[ \begin{array}{|c|r|} \hline x & f(x) \\ \hline 8 & 71 \\ \hline \end{array} \][/tex]

So,
[tex]\[ f(8) = 71 \][/tex]

### Part 2: Solve [tex]\( f(x) = 2 \)[/tex]

To solve [tex]\( f(x) = 2 \)[/tex], we need to find the value(s) of [tex]\( x \)[/tex] for which [tex]\( f(x) \)[/tex] equals 2. We will examine the table and identify any [tex]\( x \)[/tex] values where [tex]\( f(x) = 2 \)[/tex].

From the table:
[tex]\[ \begin{array}{|c|r|} \hline x & f(x) \\ \hline 6 & 2 \\ \hline \end{array} \][/tex]

We see that [tex]\( f(6) = 2 \)[/tex]. Hence,
[tex]\[ x = 6 \][/tex]

Thus, summarizing the results:

- [tex]\( f(8) = 71 \)[/tex]
- The solution to [tex]\( f(x) = 2 \)[/tex] is [tex]\( x = 6 \)[/tex]

[tex]\[ f(8) = \boxed{71} \][/tex]
[tex]\[ x = \boxed{6} \][/tex]