Let's address each part of the question step by step.
### Part 1: Evaluate [tex]\( f(8) \)[/tex]
The table provides values for the function [tex]\( f(x) \)[/tex] at specific points [tex]\( x \)[/tex]. To find [tex]\( f(8) \)[/tex], we look at the given table and find the value of [tex]\( f(x) \)[/tex] when [tex]\( x = 8 \)[/tex].
From the table:
[tex]\[
\begin{array}{|c|r|}
\hline
x & f(x) \\
\hline
8 & 71 \\
\hline
\end{array}
\][/tex]
So,
[tex]\[
f(8) = 71
\][/tex]
### Part 2: Solve [tex]\( f(x) = 2 \)[/tex]
To solve [tex]\( f(x) = 2 \)[/tex], we need to find the value(s) of [tex]\( x \)[/tex] for which [tex]\( f(x) \)[/tex] equals 2. We will examine the table and identify any [tex]\( x \)[/tex] values where [tex]\( f(x) = 2 \)[/tex].
From the table:
[tex]\[
\begin{array}{|c|r|}
\hline
x & f(x) \\
\hline
6 & 2 \\
\hline
\end{array}
\][/tex]
We see that [tex]\( f(6) = 2 \)[/tex]. Hence,
[tex]\[
x = 6
\][/tex]
Thus, summarizing the results:
- [tex]\( f(8) = 71 \)[/tex]
- The solution to [tex]\( f(x) = 2 \)[/tex] is [tex]\( x = 6 \)[/tex]
[tex]\[
f(8) = \boxed{71}
\][/tex]
[tex]\[
x = \boxed{6}
\][/tex]