What are the factors of [tex]$5x^2 + 39x - 8$[/tex]?

A. [tex]$(5x - 4)(x + 2)$[/tex]
B. [tex][tex]$(5x - 2)(x + 4)$[/tex][/tex]
C. [tex]$(5x - 1)(x + 8)$[/tex]
D. [tex]$(5x - 8)(x + 1)$[/tex]



Answer :

To determine the factors of the polynomial [tex]\(5x^2 + 39x - 8\)[/tex], we look for expressions of the form [tex]\((ax + b)(cx + d)\)[/tex] that multiply to give the original polynomial.

After analyzing the options, we find that the correct factorization of the polynomial [tex]\(5x^2 + 39x - 8\)[/tex] is:

[tex]\[ (x + 8)(5x - 1) \][/tex]

Let's verify this by expanding the factors:

[tex]\[ (x + 8)(5x - 1) = x \cdot 5x + x \cdot (-1) + 8 \cdot 5x + 8 \cdot (-1) \][/tex]

Simplify each term separately:

[tex]\[ = 5x^2 - x + 40x - 8 \][/tex]

Combine like terms:

[tex]\[ = 5x^2 + 39x - 8 \][/tex]

This confirms that:

[tex]\[ (x + 8)(5x - 1) = 5x^2 + 39x - 8 \][/tex]

Thus, the correct factorization of the given polynomial is:

[tex]\[ (5x - 1)(x + 8) \][/tex]

So, the correct answer is:

[tex]\[ (5 x - 1)(x + 8) \][/tex]