Which of the following points is on the graph of [tex]$x - 2y = 6$[/tex]?

A. [tex]$(-2, 2)$[/tex]
B. [tex][tex]$(-4, 2)$[/tex][/tex]
C. [tex]$(4, -2)$[/tex]
D. [tex]$(2, -2)$[/tex]



Answer :

To determine which of the given points lies on the graph of the equation [tex]\(x - 2y = 6\)[/tex], we need to substitute each point into the equation and see if the equation holds true. Let's check each point one by one.

1. Point A: [tex]\((-2, 2)\)[/tex]

Substitute [tex]\(x = -2\)[/tex] and [tex]\(y = 2\)[/tex] into the equation:
[tex]\[ -2 - 2(2) = -2 - 4 = -6 \neq 6 \][/tex]
This point does not satisfy the equation.

2. Point B: [tex]\((-4, 2)\)[/tex]

Substitute [tex]\(x = -4\)[/tex] and [tex]\(y = 2\)[/tex] into the equation:
[tex]\[ -4 - 2(2) = -4 - 4 = -8 \neq 6 \][/tex]
This point does not satisfy the equation.

3. Point C: [tex]\((4, -2)\)[/tex]

Substitute [tex]\(x = 4\)[/tex] and [tex]\(y = -2\)[/tex] into the equation:
[tex]\[ 4 - 2(-2) = 4 + 4 = 8 \neq 6 \][/tex]
This point does not satisfy the equation.

4. Point D: [tex]\((2, -2)\)[/tex]

Substitute [tex]\(x = 2\)[/tex] and [tex]\(y = -2\)[/tex] into the equation:
[tex]\[ 2 - 2(-2) = 2 + 4 = 6 = 6 \][/tex]
This point satisfies the equation.

Therefore, the point that lies on the graph of [tex]\(x - 2y = 6\)[/tex] is:
[tex]\[ \boxed{(2, -2)} \][/tex]