\begin{tabular}{|l|l|}
\hline
\multicolumn{1}{|c|}{ Statements } & \multicolumn{1}{|c|}{ Reasons } \\
\hline
[tex]$x^2+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^2=-\frac{4 a c}{4 a^2}+\frac{b^2}{4 a^2}$[/tex] & Find a common denominator on the right side of the equation \\
\hline
[tex]$x^2+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^2=\frac{b^2-4 a c}{4 a^2}$[/tex] & Add the fractions together on the right side of the equation \\
\hline
[tex]$\left(x+\frac{b}{2 a}\right)^2=\frac{b^2-4 a c}{4 a^2}$[/tex] & Rewrite the perfect square trinomial on the left side of the equation as a binomial squared \\
\hline
[tex]$x+\frac{b}{2 a}= \pm \sqrt{\frac{b^2-4 a c}{4 a^2}}$[/tex] & Take the square root of both sides of the equation \\
\hline
[tex]$x+\frac{b}{2 a}= \pm \frac{\sqrt{b^2-4 a c}}{2 a}$[/tex] & Simplify the square root expression \\
\hline
\end{tabular}

[tex]$x=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}$[/tex]



Answer :

Certainly! Let's delve into the detailed solution step-by-step.

1. Combine the fractions on the right side:

Given the equation:
[tex]\[ x^2 + \frac{b}{a} x + \left( \frac{b}{2a} \right)^2 = -\frac{4ac}{4a^2} + \frac{b^2}{4a^2} \][/tex]
We want a common denominator to combine the fractions. The common denominator is [tex]\( 4a^2 \)[/tex]:
[tex]\[ -\frac{4ac}{4a^2} + \frac{b^2}{4a^2} = \frac{b^2 - 4ac}{4a^2} \][/tex]

2. Add the fractions together on the right side:

After combining the fractions, the equation becomes:
[tex]\[ x^2 + \frac{b}{a} x + \left( \frac{b}{2a} \right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]

3. Rewrite the left side as a perfect square trinomial:

Notice that the left side of the equation is a perfect square trinomial. It can be expressed as a squared binomial:
[tex]\[ \left( x + \frac{b}{2a} \right)^2 = \frac{b^2 - 4ac}{4a^2} \][/tex]

4. Take the square root of both sides:

To solve for [tex]\( x \)[/tex], we take the square root of both sides. Remember that when you take the square root of both sides, you should consider both the positive and negative roots:
[tex]\[ x + \frac{b}{2a} = \pm \sqrt{ \frac{b^2 - 4ac}{4a^2} } \][/tex]

5. Simplify the square root:

The square root on the right side can be simplified:
[tex]\[ \sqrt{ \frac{b^2 - 4ac}{4a^2} } = \frac{ \sqrt{b^2 - 4ac} }{2a} \][/tex]
Thus, the equation becomes:
[tex]\[ x + \frac{b}{2a} = \pm \frac{ \sqrt{b^2 - 4ac} }{2a} \][/tex]

6. Isolate [tex]\( x \)[/tex] on one side:

Finally, to solve for [tex]\( x \)[/tex], we subtract [tex]\( \frac{b}{2a} \)[/tex] from both sides:
[tex]\[ x = - \frac{b}{2a} \pm \frac{ \sqrt{b^2 - 4ac} }{2a} \][/tex]
Combine the fractions to get the final form of the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

This is the standard quadratic formula used to solve quadratic equations of the form [tex]\( ax^2 + bx + c = 0 \)[/tex].

Therefore, our final answer is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]