26. Given [tex]\(\left. \ldots { }^n P_2 + 24 \right) = { }^{2n} P_2\)[/tex], find the positive value of [tex]\(n\)[/tex].



Answer :

Sure, let’s work through the problem step-by-step. We are given the equation:

[tex]\[ P(n, 2) + 24 = P(2n, 2) \][/tex]

where [tex]\(P(n, k)\)[/tex] is the number of permutations of [tex]\(n\)[/tex] items taken [tex]\(k\)[/tex] at a time.

The formula for permutations [tex]\(P(n, k)\)[/tex] is:

[tex]\[ P(n, k) = \frac{n!}{(n-k)!} \][/tex]

For [tex]\(P(n, 2)\)[/tex], the formula becomes:

[tex]\[ P(n, 2) = \frac{n!}{(n-2)!} \][/tex]

Similarly, for [tex]\(P(2n, 2)\)[/tex], the formula is:

[tex]\[ P(2n, 2) = \frac{(2n)!}{(2n-2)!} \][/tex]

Let's substitute these into the given equation:

[tex]\[ \frac{n!}{(n-2)!} + 24 = \frac{(2n)!}{(2n-2)!} \][/tex]

We know that:

[tex]\[ \frac{n!}{(n-2)!} = n \times (n-1) \][/tex]

So, the equation becomes:

[tex]\[ n(n-1) + 24 = \frac{(2n)!}{(2n-2)!} \][/tex]

Next, we can simplify [tex]\(\frac{(2n)!}{(2n-2)!}\)[/tex] as:

[tex]\[ \frac{(2n)!}{(2n-2)!} = (2n)(2n-1) \][/tex]

Thus, the equation now is:

[tex]\[ n(n-1) + 24 = (2n)(2n-1) \][/tex]

We expand both sides:

[tex]\[ n^2 - n + 24 = 4n^2 - 2n \][/tex]

Rearrange all terms to one side of the equation to set it to zero:

[tex]\[ n^2 - n + 24 = 4n^2 - 2n \][/tex]

[tex]\[ n^2 - n + 24 - 4n^2 + 2n = 0 \][/tex]

Combine like terms:

[tex]\[ -3n^2 + n + 24 = 0 \][/tex]

Multiply through by -1 to make the quadratic easier to work with:

[tex]\[ 3n^2 - n - 24 = 0 \][/tex]

This is a standard quadratic equation of the form [tex]\(ax^2 + bx + c = 0\)[/tex], with [tex]\(a = 3\)[/tex], [tex]\(b = -1\)[/tex], and [tex]\(c = -24\)[/tex]. We can solve this using the quadratic formula:

[tex]\[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Substitute [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the formula:

[tex]\[ n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(3)(-24)}}{2(3)} \][/tex]

[tex]\[ n = \frac{1 \pm \sqrt{1 + 288}}{6} \][/tex]

[tex]\[ n = \frac{1 \pm \sqrt{289}}{6} \][/tex]

[tex]\[ n = \frac{1 \pm 17}{6} \][/tex]

This gives us two potential solutions:

[tex]\[ n = \frac{1 + 17}{6} = \frac{18}{6} = 3 \][/tex]

[tex]\[ n = \frac{1 - 17}{6} = \frac{-16}{6} = -\frac{8}{3} \][/tex]

Since [tex]\(n\)[/tex] must be positive, we discard [tex]\(-\frac{8}{3}\)[/tex] and keep:

[tex]\[ n = 3 \][/tex]

Thus, the positive value of [tex]\(n\)[/tex] is [tex]\(\boxed{3}\)[/tex].