Express as a single logarithm and, if possible, simplify.

[tex]\[
\frac{1}{2} \log(a) + 3 \log(b)
\][/tex]

[tex]\[
\frac{1}{2} \log(a) + 3 \log(b) =
\][/tex]

[tex]\[
\square
\][/tex]

(Use parentheses to indicate the argument of the logarithm.)



Answer :

To express [tex]\(\frac{1}{2} \log a + 3 \log b \)[/tex] as a single logarithm and simplify it, follow these steps:

1. Identify the given logarithmic expressions:
[tex]\[ \frac{1}{2} \log(a) \quad \text{and} \quad 3 \log(b). \][/tex]

2. Apply the power rule of logarithms, which states that [tex]\( k \log(x) = \log(x^k) \)[/tex].

For [tex]\(\frac{1}{2} \log(a)\)[/tex], we have:
[tex]\[ \frac{1}{2} \log(a) = \log(a^{\frac{1}{2}}). \][/tex]

For [tex]\(3 \log(b)\)[/tex], we have:
[tex]\[ 3 \log(b) = \log(b^3). \][/tex]

3. Combine the logarithmic expressions using the logarithm addition rule, which states that [tex]\( \log(x) + \log(y) = \log(xy) \)[/tex].

Thus, we combine [tex]\(\log(a^{\frac{1}{2}})\)[/tex] and [tex]\(\log(b^3)\)[/tex]:
[tex]\[ \log(a^{\frac{1}{2}}) + \log(b^3) = \log(a^{\frac{1}{2}} \cdot b^3). \][/tex]

4. Simplify the expression if necessary. In this case, the expression is already simplified.

Therefore, the expression [tex]\(\frac{1}{2} \log a + 3 \log b\)[/tex] as a single logarithm is:
[tex]\[ \boxed{\log(a^{\frac{1}{2}} \cdot b^3)}. \][/tex]