Mrs. Ishimitsu is installing a rubber bumper around the edge of her coffee table. The dimensions of the rectangular table are [tex]\(\left(2x^2 - 16\right)\)[/tex] feet and [tex]\(\left(-x^2 + 4x + 1\right)\)[/tex] feet.

Which expression represents the total perimeter of the table, and if [tex]\(x = 3\)[/tex], what is the length of the entire rubber bumper?

A. [tex]\(x^2 + 4x - 15 ; 3\)[/tex] feet
B. [tex]\(x^2 + 4x - 15 ; 6\)[/tex] feet
C. [tex]\(2x^2 + 8x - 30 ; 6\)[/tex] feet
D. [tex]\(2x^2 + 8x - 30 ; 12\)[/tex] feet



Answer :

Let's begin by identifying the dimensions of Mrs. Ishimitsu's coffee table given in the problem:

- The length of the table is [tex]\( 2x^2 - 16 \)[/tex] feet.
- The width of the table is [tex]\( -x^2 + 4x + 1 \)[/tex] feet.

To find the perimeter of a rectangle, we use the formula:
[tex]\[ \text{Perimeter} = 2 \times (\text{Length} + \text{Width}) \][/tex]

Now we substitute the given expressions for the length and the width into this formula:
[tex]\[ \text{Perimeter} = 2 \times \left( (2x^2 - 16) + (-x^2 + 4x + 1) \right) \][/tex]

First, simplify the expression inside the parentheses:
[tex]\[ (2x^2 - 16) + (-x^2 + 4x + 1) = 2x^2 - x^2 + 4x - 16 + 1 = x^2 + 4x - 15 \][/tex]

Then multiply by 2:
[tex]\[ \text{Perimeter} = 2 \times (x^2 + 4x - 15) = 2x^2 + 8x - 30 \][/tex]

Therefore, the expression for the total perimeter of the table in terms of [tex]\( x \)[/tex] is [tex]\( 2x^2 + 8x - 30 \)[/tex].

Now, if [tex]\( x = 3 \)[/tex], we need to find the length of the entire rubber bumper using our expression for the perimeter.

Substitute [tex]\( x = 3 \)[/tex] into the perimeter formula [tex]\( 2x^2 + 8x - 30 \)[/tex]:
[tex]\[ \text{Perimeter} = 2(3)^2 + 8(3) - 30 \][/tex]

Calculate each term:
[tex]\[ 2(9) + 24 - 30 = 18 + 24 - 30 = 12 \][/tex]

Thus, if [tex]\( x = 3 \)[/tex], the length of the entire rubber bumper is 12 feet.

The correct option is:
[tex]\[ 2x^2 + 8x - 30; 12 \text{ feet} \][/tex]