Given the following vectors in component form:

[tex]\[
\begin{array}{l}
r=(2,3) \\
s=(5,-3) \\
t=(-8,6)
\end{array}
\][/tex]

Check all expressions whose sum represents the same vector as [tex]\(( r + s )+ t\)[/tex]:

A. [tex]\(\langle 0,7 \rangle + \langle -8,6 \rangle\)[/tex]

B. [tex]\(\langle 7,0 \rangle + \langle -8,6 \rangle\)[/tex]

C. [tex]\(\langle 2,3 \rangle + \langle -3,3 \rangle\)[/tex]

D. [tex]\(\langle 2,3 \rangle + \langle 3,-3 \rangle\)[/tex]

E. [tex]\(\langle -6,9 \rangle + \langle 5,-3 \rangle\)[/tex]



Answer :

First, let's calculate the sum of the vectors [tex]\( r \)[/tex], [tex]\( s \)[/tex], and [tex]\( t \)[/tex].

[tex]\[ r = (2, 3), \quad s = (5, -3), \quad t = (-8, 6) \][/tex]

To find [tex]\( r + s + t \)[/tex]:

1. Add the corresponding components of [tex]\( r \)[/tex], [tex]\( s \)[/tex], and [tex]\( t \)[/tex]:
[tex]\[ (r_1 + s_1 + t_1, r_2 + s_2 + t_2) = (2 + 5 + (-8), 3 + (-3) + 6) \][/tex]

2. Calculate the sums:
[tex]\[ (2 + 5 - 8, 3 - 3 + 6) = (-1, 6) \][/tex]

Thus, [tex]\( r + s + t = (-1, 6) \)[/tex].

Now, let's check each expression to see which ones sum to the vector [tex]\( (-1, 6) \)[/tex].

1. Expression [tex]\( \langle 0, 7 \rangle + \langle -8, 6 \rangle \)[/tex]

Calculate the sum:
[tex]\[ (0 + (-8), 7 + 6) = (-8, 13) \][/tex]
This does not match [tex]\( (-1, 6) \)[/tex].

2. Expression [tex]\( \langle 7, 0 \rangle + \langle -8, 6 \rangle \)[/tex]

Calculate the sum:
[tex]\[ (7 + (-8), 0 + 6) = (-1, 6) \][/tex]
This matches [tex]\( (-1, 6) \)[/tex].

3. Expression [tex]\( \langle 2, 3 \rangle + \langle -3, 3 \rangle \)[/tex]

Calculate the sum:
[tex]\[ (2 + (-3), 3 + 3) = (-1, 6) \][/tex]
This matches [tex]\( (-1, 6) \)[/tex].

4. Expression [tex]\( \langle 2, 3 \rangle + \langle 3, -3 \rangle \)[/tex]

Calculate the sum:
[tex]\[ (2 + 3, 3 + (-3)) = (5, 0) \][/tex]
This does not match [tex]\( (-1, 6) \)[/tex].

5. Expression [tex]\( \langle -6, 9 \rangle + \langle 5, -3 \rangle \)[/tex]

Calculate the sum:
[tex]\[ (-6 + 5, 9 + (-3)) = (-1, 6) \][/tex]
This matches [tex]\( (-1, 6) \)[/tex].

So, the expressions whose sums represent the same vector as [tex]\( (r + s) + t \)[/tex] are:

[tex]\[ \boxed{\langle 7, 0 \rangle + \langle -8, 6 \rangle, \langle 2, 3 \rangle + \langle -3, 3 \rangle, \langle -6, 9 \rangle + \langle 5, -3 \rangle} \][/tex]