Evaluate [tex]$g(t)$[/tex] for the given values of [tex]t[/tex].

[tex]g(t) = |5 - t|[/tex]

a) [tex]g(8) = \square[/tex]

b) [tex]g(37) = \square[/tex]



Answer :

To evaluate [tex]\( g(t) = |5 - t| \)[/tex] for the given values of [tex]\( t \)[/tex], we'll proceed step by step for each specific value.

### a) Evaluation of [tex]\( g(8) \)[/tex]:
1. Start with the function [tex]\( g(t) = |5 - t| \)[/tex].
2. Substitute [tex]\( t = 8 \)[/tex] into the function:
[tex]\[ g(8) = |5 - 8| \][/tex]
3. Compute the expression inside the absolute value:
[tex]\[ 5 - 8 = -3 \][/tex]
4. Find the absolute value of [tex]\(-3\)[/tex]:
[tex]\[ |-3| = 3 \][/tex]
5. Therefore, the value of [tex]\( g(8) \)[/tex] is:
[tex]\[ g(8) = 3 \][/tex]

### b) Evaluation of [tex]\( g(37) \)[/tex]:
1. Start with the function [tex]\( g(t) = |5 - t| \)[/tex].
2. Substitute [tex]\( t = 37 \)[/tex] into the function:
[tex]\[ g(37) = |5 - 37| \][/tex]
3. Compute the expression inside the absolute value:
[tex]\[ 5 - 37 = -32 \][/tex]
4. Find the absolute value of [tex]\(-32\)[/tex]:
[tex]\[ |-32| = 32 \][/tex]
5. Therefore, the value of [tex]\( g(37) \)[/tex] is:
[tex]\[ g(37) = 32 \][/tex]

In conclusion:
[tex]\[ \text{a) } g(8) = 3 \][/tex]
[tex]\[ \text{b) } g(37) = 32 \][/tex]