[tex]\(\Delta JKL\)[/tex] has coordinates [tex]\(J(2,4), K(3,1)\)[/tex], and [tex]\(L(3,3)\)[/tex]. A translation maps the point [tex]\(J\)[/tex] to the point [tex]\(J'\)[/tex] [tex]\((3,3)\)[/tex].

What are the coordinates of [tex]\(K'\)[/tex]?

A. [tex]\((-3,1)\)[/tex]
B. [tex]\((2,2)\)[/tex]
C. [tex]\((3,2)\)[/tex]
D. [tex]\((4,0)\)[/tex]



Answer :

To find the coordinates of [tex]\( K' \)[/tex] after translating point [tex]\( K \)[/tex], we need to determine the translation vector that maps point [tex]\( J \)[/tex] to [tex]\( J' \)[/tex]. Here are the coordinates given:
- [tex]\( J(2, 4) \)[/tex]
- [tex]\( J'(3, 3) \)[/tex]
- [tex]\( K(3, 1) \)[/tex]

Step-by-Step Solution:

1. Determine the translation vector:
- The translation vector is calculated by finding the difference in the x-coordinates and y-coordinates of [tex]\( J \)[/tex] and [tex]\( J' \)[/tex]:
[tex]\[ \text{Translation vector} = (J'_x - J_x, J'_y - J_y) \][/tex]
- Substitute the given coordinates of [tex]\( J \)[/tex] and [tex]\( J' \)[/tex]:
[tex]\[ \text{Translation vector} = (3 - 2, 3 - 4) = (1, -1) \][/tex]

2. Apply the translation vector to point [tex]\( K \)[/tex]:
- To find the coordinates of [tex]\( K' \)[/tex], we add the components of the translation vector to the coordinates of [tex]\( K \)[/tex]:
[tex]\[ K'_x = K_x + 1 \][/tex]
[tex]\[ K'_y = K_y - 1 \][/tex]
- Substitute the given coordinates of [tex]\( K \)[/tex]:
[tex]\[ K'_x = 3 + 1 = 4 \][/tex]
[tex]\[ K'_y = 1 - 1 = 0 \][/tex]

3. Conclusion:
- Therefore, the coordinates of [tex]\( K' \)[/tex] are [tex]\((4, 0)\)[/tex].

So, the correct coordinates of [tex]\( K' \)[/tex] are [tex]\( \boxed{(4, 0)} \)[/tex].