To find the value of [tex]\( x \)[/tex] in the equation [tex]\( 2x + 3y = 36 \)[/tex] when [tex]\( y = 6 \)[/tex], follow these steps:
1. Start with the original equation:
[tex]\[
2x + 3y = 36
\][/tex]
2. Substitute [tex]\( y = 6 \)[/tex] into the equation:
[tex]\[
2x + 3(6) = 36
\][/tex]
3. Simplify the term [tex]\( 3 \cdot 6 \)[/tex]:
[tex]\[
2x + 18 = 36
\][/tex]
4. Subtract 18 from both sides of the equation to isolate the term with [tex]\( x \)[/tex]:
[tex]\[
2x = 36 - 18
\][/tex]
[tex]\[
2x = 18
\][/tex]
5. Divide both sides by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[
x = \frac{18}{2}
\][/tex]
[tex]\[
x = 9
\][/tex]
Therefore, the value of [tex]\( x \)[/tex] is [tex]\(\boxed{9}\)[/tex].