Juan, Lorena y Luis recogieron dulces en la noche de octubre.

- Juan tiene 54 dulces, de los cuales 12 son de chocolate.
- Lorena tiene 60 dulces, de los cuales 15 son de chocolate.
- Luis tiene 40 dulces, de los cuales 10 son de chocolate.

¿Cuál de los tres niños tiene una cantidad de dulces de chocolate igual a [tex]$\frac{1}{4}$[/tex] de sus dulces?



Answer :

To solve this problem, we need to determine if any child has a ratio of chocolates to total candies that equals [tex]\(\frac{1}{4}\)[/tex].

Let's break it down step by step for each child:

### Juan:
1. Total Candies: 54
2. Chocolates: 12

We calculate the ratio of chocolates to total candies:
[tex]\[ \text{Juan's ratio} = \frac{\text{Chocolates}}{\text{Total Candies}} = \frac{12}{54} \][/tex]

### Lorena:
1. Total Candies: 60
2. Chocolates: 15

We calculate the ratio of chocolates to total candies:
[tex]\[ \text{Lorena's ratio} = \frac{\text{Chocolates}}{\text{Total Candies}} = \frac{15}{60} \][/tex]

### Luis:
1. Total Candies: 40
2. Chocolates: 10

We calculate the ratio of chocolates to total candies:
[tex]\[ \text{Luis's ratio} = \frac{\text{Chocolates}}{\text{Total Candies}} = \frac{10}{40} \][/tex]

Next, we need to compare these ratios with the target ratio, which is [tex]\(\frac{1}{4}\)[/tex].

We can see the numerical results:
- Juan's ratio: [tex]\(0.2222...\)[/tex] which is approximately [tex]\(\frac{2}{9}\)[/tex]
- Lorena's ratio: [tex]\(0.25\)[/tex] which is exactly [tex]\(\frac{1}{4}\)[/tex]
- Luis's ratio: [tex]\(0.25\)[/tex] which is exactly [tex]\(\frac{1}{4}\)[/tex]

### Conclusion:
From the calculations:
- Juan does not have a ratio of [tex]\(\frac{1}{4}\)[/tex].
- Lorena has a ratio of [tex]\(\frac{1}{4}\)[/tex].
- Luis has a ratio of [tex]\(\frac{1}{4}\)[/tex].

Therefore, the children who have a quantity of chocolates equal to [tex]\(\frac{1}{4}\)[/tex] of their candies are Lorena and Luis.