Answer :
To determine which compound exhibits the strongest overall intermolecular forces based on the temperature changes observed during evaporation, we need to understand the relationship between temperature change and intermolecular forces.
When a liquid evaporates, it absorbs heat from its surroundings, leading to a temperature drop. The extent of this temperature drop can be related to the strength of the intermolecular forces. The following general principles apply:
1. Stronger Intermolecular Forces: If a compound has strong intermolecular forces, it will require more energy to break these forces and allow the molecules to escape into the gaseous phase. As a result, the temperature drop will be smaller because less heat is taken away from the liquid.
2. Weaker Intermolecular Forces: Conversely, if a compound has weak intermolecular forces, it will require less energy for the molecules to evaporate, leading to a larger temperature drop as more heat is absorbed from the surroundings.
Given this, let's analyze the data table and identify the compound with the smallest temperature change:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Compound} & \Delta T (^{\circ} C) \\ \hline \text{C}_4\text{H}_{10} & -19.6 \\ \hline \text{C}_4\text{H}_8\text{O} & -12.1 \\ \hline \text{C}_4\text{H}_9\text{OH} & -4.3 \\ \hline \end{tabular} \][/tex]
1. For [tex]\(\text{C}_4\text{H}_{10}\)[/tex], the temperature change is [tex]\(-19.6 ^\circ \text{C}\)[/tex].
2. For [tex]\(\text{C}_4\text{H}_8\text{O}\)[/tex], the temperature change is [tex]\(-12.1 ^\circ \text{C}\)[/tex].
3. For [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex], the temperature change is [tex]\(-4.3 ^\circ \text{C}\)[/tex].
Among these, [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex] has the smallest temperature change of [tex]\(-4.3 ^\circ \text{C}\)[/tex]. This indicates that [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex] has the strongest overall intermolecular forces as it experienced the least amount of temperature change when evaporating, meaning it required more energy to break the intermolecular bonds.
Thus, the compound [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex] exhibits the strongest overall intermolecular forces.
When a liquid evaporates, it absorbs heat from its surroundings, leading to a temperature drop. The extent of this temperature drop can be related to the strength of the intermolecular forces. The following general principles apply:
1. Stronger Intermolecular Forces: If a compound has strong intermolecular forces, it will require more energy to break these forces and allow the molecules to escape into the gaseous phase. As a result, the temperature drop will be smaller because less heat is taken away from the liquid.
2. Weaker Intermolecular Forces: Conversely, if a compound has weak intermolecular forces, it will require less energy for the molecules to evaporate, leading to a larger temperature drop as more heat is absorbed from the surroundings.
Given this, let's analyze the data table and identify the compound with the smallest temperature change:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Compound} & \Delta T (^{\circ} C) \\ \hline \text{C}_4\text{H}_{10} & -19.6 \\ \hline \text{C}_4\text{H}_8\text{O} & -12.1 \\ \hline \text{C}_4\text{H}_9\text{OH} & -4.3 \\ \hline \end{tabular} \][/tex]
1. For [tex]\(\text{C}_4\text{H}_{10}\)[/tex], the temperature change is [tex]\(-19.6 ^\circ \text{C}\)[/tex].
2. For [tex]\(\text{C}_4\text{H}_8\text{O}\)[/tex], the temperature change is [tex]\(-12.1 ^\circ \text{C}\)[/tex].
3. For [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex], the temperature change is [tex]\(-4.3 ^\circ \text{C}\)[/tex].
Among these, [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex] has the smallest temperature change of [tex]\(-4.3 ^\circ \text{C}\)[/tex]. This indicates that [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex] has the strongest overall intermolecular forces as it experienced the least amount of temperature change when evaporating, meaning it required more energy to break the intermolecular bonds.
Thus, the compound [tex]\(\text{C}_4\text{H}_9\text{OH}\)[/tex] exhibits the strongest overall intermolecular forces.