Solve this system of equations:

[tex]\[ \left\{\begin{array}{l}
3x - y = -11 \\
2x - 3y = -5
\end{array}\right. \][/tex]

A. One solution: [tex]$\square$[/tex]

B. No solution

C. Infinite number of solutions



Answer :

Sure, let's solve the system of equations step-by-step.

Given the system:
[tex]\[ \left\{\begin{array}{l} 3x - y = -11 \\ 2x - 3y = -5 \end{array}\right. \][/tex]

### Step 1: Write the equations in standard form
The system is already in standard form:
[tex]\[ 3x - y = -11 \tag{1} \][/tex]
[tex]\[ 2x - 3y = -5 \tag{2} \][/tex]

### Step 2: Solve one of the equations for one variable

Let's solve equation (1) for [tex]\( y \)[/tex]:
[tex]\[ 3x - y = -11 \][/tex]
Add [tex]\( y \)[/tex] to both sides:
[tex]\[ 3x = y - 11 \][/tex]
Then add 11 to both sides to solve for [tex]\( y \)[/tex]:
[tex]\[ y = 3x + 11 \tag{3} \][/tex]

### Step 3: Substitute [tex]\( y \)[/tex] from equation (3) into equation (2)

Substitute [tex]\( y = 3x + 11 \)[/tex] into [tex]\( 2x - 3y = -5 \)[/tex]:
[tex]\[ 2x - 3(3x + 11) = -5 \][/tex]

### Step 4: Solve for [tex]\( x \)[/tex]

Distribute the [tex]\(-3\)[/tex]:
[tex]\[ 2x - 9x - 33 = -5 \][/tex]
Combine like terms:
[tex]\[ -7x - 33 = -5 \][/tex]
Add 33 to both sides:
[tex]\[ -7x = 28 \][/tex]
Divide by [tex]\(-7\)[/tex]:
[tex]\[ x = -4 \][/tex]

### Step 5: Substitute [tex]\( x \)[/tex] back into equation (3) to find [tex]\( y \)[/tex]

Use [tex]\( x = -4 \)[/tex] in equation (3):
[tex]\[ y = 3(-4) + 11 \][/tex]
[tex]\[ y = -12 + 11 \][/tex]
[tex]\[ y = -1 \][/tex]

### Solution

The solution to the system of equations is:
[tex]\[ (x, y) = (-4, -1) \][/tex]

Hence, there is one solution: [tex]\((-4, -1)\)[/tex].