Answer :
To solve the system of linear equations using the addition method, follow these steps:
Given the system:
[tex]\[ \left\{\begin{array}{l} 9x - 9y = -90 \\ 2x + 9y = 57 \end{array}\right. \][/tex]
1. Add the Equations:
First, we attempt to eliminate one variable by adding the two equations. Notably, the coefficients of [tex]\( y \)[/tex] in the two equations are already opposites ([tex]\(-9\)[/tex] and [tex]\(9\)[/tex]). Therefore, adding these two equations will eliminate [tex]\( y \)[/tex].
[tex]\[ \begin{array}{l} (9x - 9y) + (2x + 9y) = -90 + 57 \end{array} \][/tex]
2. Simplify the Result:
Simplify the left-hand side and the right-hand side of the resulting equation:
[tex]\[ 9x - 9y + 2x + 9y = -90 + 57 \][/tex]
Notice that [tex]\(-9y\)[/tex] and [tex]\(9y\)[/tex] cancel each other out.
[tex]\[ 9x + 2x = -90 + 57 \][/tex]
[tex]\[ 11x = -33 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
Now, solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 11:
[tex]\[ x = \frac{-33}{11} \][/tex]
[tex]\[ x = -3 \][/tex]
So, we have [tex]\( x = -3 \)[/tex].
4. Substitute [tex]\( x \)[/tex] Back into One of the Original Equations:
Substitute [tex]\( x = -3 \)[/tex] into either of the original equations to solve for [tex]\( y \)[/tex].
Using the second equation [tex]\( 2x + 9y = 57 \)[/tex]:
[tex]\[ 2(-3) + 9y = 57 \][/tex]
Simplify the left-hand side:
[tex]\[ -6 + 9y = 57 \][/tex]
5. Solve for [tex]\( y \)[/tex]:
Isolate [tex]\( y \)[/tex] by adding 6 to both sides of the equation:
[tex]\[ 9y = 57 + 6 \][/tex]
[tex]\[ 9y = 63 \][/tex]
Divide both sides by 9:
[tex]\[ y = \frac{63}{9} \][/tex]
[tex]\[ y = 7 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (-3, 7) \][/tex]
One solution: [tex]\((-3, 7)\)[/tex]
Given the system:
[tex]\[ \left\{\begin{array}{l} 9x - 9y = -90 \\ 2x + 9y = 57 \end{array}\right. \][/tex]
1. Add the Equations:
First, we attempt to eliminate one variable by adding the two equations. Notably, the coefficients of [tex]\( y \)[/tex] in the two equations are already opposites ([tex]\(-9\)[/tex] and [tex]\(9\)[/tex]). Therefore, adding these two equations will eliminate [tex]\( y \)[/tex].
[tex]\[ \begin{array}{l} (9x - 9y) + (2x + 9y) = -90 + 57 \end{array} \][/tex]
2. Simplify the Result:
Simplify the left-hand side and the right-hand side of the resulting equation:
[tex]\[ 9x - 9y + 2x + 9y = -90 + 57 \][/tex]
Notice that [tex]\(-9y\)[/tex] and [tex]\(9y\)[/tex] cancel each other out.
[tex]\[ 9x + 2x = -90 + 57 \][/tex]
[tex]\[ 11x = -33 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
Now, solve for [tex]\( x \)[/tex] by dividing both sides of the equation by 11:
[tex]\[ x = \frac{-33}{11} \][/tex]
[tex]\[ x = -3 \][/tex]
So, we have [tex]\( x = -3 \)[/tex].
4. Substitute [tex]\( x \)[/tex] Back into One of the Original Equations:
Substitute [tex]\( x = -3 \)[/tex] into either of the original equations to solve for [tex]\( y \)[/tex].
Using the second equation [tex]\( 2x + 9y = 57 \)[/tex]:
[tex]\[ 2(-3) + 9y = 57 \][/tex]
Simplify the left-hand side:
[tex]\[ -6 + 9y = 57 \][/tex]
5. Solve for [tex]\( y \)[/tex]:
Isolate [tex]\( y \)[/tex] by adding 6 to both sides of the equation:
[tex]\[ 9y = 57 + 6 \][/tex]
[tex]\[ 9y = 63 \][/tex]
Divide both sides by 9:
[tex]\[ y = \frac{63}{9} \][/tex]
[tex]\[ y = 7 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (-3, 7) \][/tex]
One solution: [tex]\((-3, 7)\)[/tex]