The vertices of the feasible region represented by a system are [tex]\((0, 100), (0, 80), (80, 60), (120, 0)\)[/tex].

What are the minimum and maximum values of the objective function [tex]\( F = 8x + 5y \)[/tex]?

Minimum: [tex]\(\square\)[/tex]

Maximum: [tex]\(\square\)[/tex]



Answer :

To solve this problem, we need to evaluate the objective function [tex]\( F = 8x + 5y \)[/tex] at each of the given vertices of the feasible region and determine the minimum and maximum values.

The vertices of the feasible region are:
1. [tex]\( (0, 100) \)[/tex]
2. [tex]\( (0, 80) \)[/tex]
3. [tex]\( (80, 60) \)[/tex]
4. [tex]\( (120, 0) \)[/tex]

Let's evaluate the objective function [tex]\( F = 8x + 5y \)[/tex] at each vertex.

1. At vertex [tex]\( (0, 100) \)[/tex]:
[tex]\[ F = 8(0) + 5(100) = 0 + 500 = 500 \][/tex]

2. At vertex [tex]\( (0, 80) \)[/tex]:
[tex]\[ F = 8(0) + 5(80) = 0 + 400 = 400 \][/tex]

3. At vertex [tex]\( (80, 60) \)[/tex]:
[tex]\[ F = 8(80) + 5(60) = 640 + 300 = 940 \][/tex]

4. At vertex [tex]\( (120, 0) \)[/tex]:
[tex]\[ F = 8(120) + 5(0) = 960 + 0 = 960 \][/tex]

We now have the values of [tex]\( F \)[/tex] at each vertex:
- At [tex]\( (0, 100) \)[/tex], [tex]\( F = 500 \)[/tex]
- At [tex]\( (0, 80) \)[/tex], [tex]\( F = 400 \)[/tex]
- At [tex]\( (80, 60) \)[/tex], [tex]\( F = 940 \)[/tex]
- At [tex]\( (120, 0) \)[/tex], [tex]\( F = 960 \)[/tex]

To determine the minimum and maximum values of [tex]\( F \)[/tex]:
- The minimum value of [tex]\( F \)[/tex] is [tex]\( 400 \)[/tex].
- The maximum value of [tex]\( F \)[/tex] is [tex]\( 960 \)[/tex].

Therefore, the minimum and maximum values of the objective function [tex]\( F = 8x + 5y \)[/tex] are:

Minimum: [tex]\( 400 \)[/tex]
Maximum: [tex]\( 960 \)[/tex]