Reflecting a point over the [tex]\( y \)[/tex]-axis changes the sign of the [tex]\( x \)[/tex]-coordinate while keeping the [tex]\( y \)[/tex]-coordinate unchanged. Let's go through the steps to find the image of the point [tex]\((-8, 10)\)[/tex] when reflected in the [tex]\( y \)[/tex]-axis.
1. Start with the original point [tex]\((-8, 10)\)[/tex].
2. To reflect this point in the [tex]\( y \)[/tex]-axis, change the sign of the [tex]\( x \)[/tex]-coordinate. The [tex]\( x \)[/tex]-coordinate of [tex]\(-8\)[/tex] will become [tex]\(8\)[/tex]. The [tex]\( y \)[/tex]-coordinate remains the same, which is [tex]\(10\)[/tex].
Thus, the coordinates of the reflected point are [tex]\((8, 10)\)[/tex].
Now, let's verify which option matches our result:
A. [tex]\((-8, -10)\)[/tex]
B. [tex]\((10, 8)\)[/tex]
C. [tex]\((8, -10)\)[/tex]
D. [tex]\((8, 10)\)[/tex]
The correct answer is:
D. [tex]\((8, 10)\)[/tex]