What is the image of [tex]$(-8,10)$[/tex] when reflected in the [tex]$y$[/tex]-axis?

A. [tex]$(-8,-10)$[/tex]
B. [tex]$(10,8)$[/tex]
C. [tex]$(8,-10)$[/tex]
D. [tex]$(8,10)$[/tex]



Answer :

Reflecting a point over the [tex]\( y \)[/tex]-axis changes the sign of the [tex]\( x \)[/tex]-coordinate while keeping the [tex]\( y \)[/tex]-coordinate unchanged. Let's go through the steps to find the image of the point [tex]\((-8, 10)\)[/tex] when reflected in the [tex]\( y \)[/tex]-axis.

1. Start with the original point [tex]\((-8, 10)\)[/tex].
2. To reflect this point in the [tex]\( y \)[/tex]-axis, change the sign of the [tex]\( x \)[/tex]-coordinate. The [tex]\( x \)[/tex]-coordinate of [tex]\(-8\)[/tex] will become [tex]\(8\)[/tex]. The [tex]\( y \)[/tex]-coordinate remains the same, which is [tex]\(10\)[/tex].

Thus, the coordinates of the reflected point are [tex]\((8, 10)\)[/tex].

Now, let's verify which option matches our result:

A. [tex]\((-8, -10)\)[/tex]
B. [tex]\((10, 8)\)[/tex]
C. [tex]\((8, -10)\)[/tex]
D. [tex]\((8, 10)\)[/tex]

The correct answer is:

D. [tex]\((8, 10)\)[/tex]