Which of the following ordered pairs is a solution to the equation [tex]6x - 4y = 4[/tex]?

A. [tex](-2, -4)[/tex]
B. [tex](-1, 0)[/tex]
C. [tex](5, 4)[/tex]
D. [tex](2, -2)[/tex]



Answer :

To determine which of the given ordered pairs is a solution to the equation [tex]\(6x - 4y = 4\)[/tex], we need to substitute each pair into the equation and check if it satisfies the equation.

Let's check each pair step-by-step:

1. Pair [tex]\((-2, -4)\)[/tex]:
[tex]\[ 6(-2) - 4(-4) = -12 + 16 = 4 \][/tex]
The left side equals [tex]\(4\)[/tex], which is the right side of the equation. Therefore, [tex]\((-2, -4)\)[/tex] is a solution.

2. Pair [tex]\((-1, 0)\)[/tex]:
[tex]\[ 6(-1) - 4(0) = -6 + 0 = -6 \][/tex]
The left side equals [tex]\(-6\)[/tex], which is not equal to [tex]\(4\)[/tex]. Therefore, [tex]\((-1, 0)\)[/tex] is not a solution.

3. Pair [tex]\((5, 4)\)[/tex]:
[tex]\[ 6(5) - 4(4) = 30 - 16 = 14 \][/tex]
The left side equals [tex]\(14\)[/tex], which is not equal to [tex]\(4\)[/tex]. Therefore, [tex]\((5, 4)\)[/tex] is not a solution.

4. Pair [tex]\((2, -2)\)[/tex]:
[tex]\[ 6(2) - 4(-2) = 12 + 8 = 20 \][/tex]
The left side equals [tex]\(20\)[/tex], which is not equal to [tex]\(4\)[/tex]. Therefore, [tex]\((2, -2)\)[/tex] is not a solution.

After checking all the pairs, we find that the pair [tex]\((-2, -4)\)[/tex] is the only one that satisfies the equation [tex]\(6x - 4y = 4\)[/tex].

Thus, the ordered pair that is a solution to the equation [tex]\(6x - 4y = 4\)[/tex] is [tex]\((-2, -4)\)[/tex].