Answered

Expand. Your answer should be a polynomial in standard form.

[tex](y^2 - 9)(y^2 - 4) = \square[/tex]



Answer :

Certainly! Let's expand and simplify the given expression step-by-step. The expression we need to expand is:

[tex]\[ \left(y^2 - 9\right)\left(y^2 - 4\right) \][/tex]

First, let's recall the distributive property, which states that for any expressions [tex]\(a\)[/tex], [tex]\(b\)[/tex], [tex]\(c\)[/tex], and [tex]\(d\)[/tex]:

[tex]\[ (a + b)(c + d) = ac + ad + bc + bd \][/tex]

For our expression, we will expand each term in the first binomial [tex]\((y^2 - 9)\)[/tex] by each term in the second binomial [tex]\((y^2 - 4)\)[/tex]:

[tex]\[ (y^2 - 9)(y^2 - 4) \][/tex]

1. First Multiply [tex]\(y^2\)[/tex] with each term in [tex]\((y^2 - 4)\)[/tex]:

[tex]\[ y^2 \cdot y^2 = y^4 \][/tex]

[tex]\[ y^2 \cdot (-4) = -4y^2 \][/tex]

2. Next, Multiply [tex]\(-9\)[/tex] with each term in [tex]\((y^2 - 4)\)[/tex]:

[tex]\[ -9 \cdot y^2 = -9y^2 \][/tex]

[tex]\[ -9 \cdot (-4) = 36 \][/tex]

Now, combine all these terms together:

[tex]\[ y^4 - 4y^2 - 9y^2 + 36 \][/tex]

3. Combine like terms:

[tex]\[ -4y^2 - 9y^2 = -13y^2 \][/tex]

Putting it all together in standard polynomial form:

[tex]\[ y^4 - 13y^2 + 36 \][/tex]

So, the expanded form of [tex]\(\left(y^2 - 9\right)\left(y^2 - 4\right)\)[/tex] is:

[tex]\[ y^4 - 13y^2 + 36 \][/tex]

Thus, the final answer is:

[tex]\[ \left(y^2 - 9\right)\left(y^2 - 4\right) = y^4 - 13y^2 + 36 \][/tex]