Identify the [tex]$x$[/tex]-intercept and [tex]$y$[/tex]-intercept of the line [tex]$2x - 5y = 20$[/tex].

A. The [tex]$x$[/tex]-intercept is [tex]$(10,0)$[/tex] and the [tex]$y$[/tex]-intercept is [tex]$(0,-4)$[/tex].
B. The [tex]$x$[/tex]-intercept is [tex]$(0,-4)$[/tex] and the [tex]$y$[/tex]-intercept is [tex]$(10,0)$[/tex].
C. The [tex]$x$[/tex]-intercept is [tex]$(2,0)$[/tex] and the [tex]$y$[/tex]-intercept is [tex]$(0,-5)$[/tex].
D. The [tex]$x$[/tex]-intercept is [tex]$(0,10)$[/tex] and the [tex]$y$[/tex]-intercept is [tex]$(-4,0)$[/tex].



Answer :

To identify the [tex]\(x\)[/tex]-intercept and [tex]\(y\)[/tex]-intercept of the line given by the equation [tex]\(2x - 5y = 20\)[/tex], we need to find the points where the line crosses the [tex]\(x\)[/tex]-axis and the [tex]\(y\)[/tex]-axis.

Finding the [tex]\(x\)[/tex]-intercept:

1. The [tex]\(x\)[/tex]-intercept is the point where the line crosses the [tex]\(x\)[/tex]-axis, which means [tex]\(y = 0\)[/tex].
2. Substitute [tex]\(y = 0\)[/tex] into the equation [tex]\(2x - 5y = 20\)[/tex]:
[tex]\[ 2x - 5(0) = 20 \][/tex]
3. Simplify the equation:
[tex]\[ 2x = 20 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{20}{2} = 10 \][/tex]
5. Therefore, the [tex]\(x\)[/tex]-intercept is [tex]\((10, 0)\)[/tex].

Finding the [tex]\(y\)[/tex]-intercept:

1. The [tex]\(y\)[/tex]-intercept is the point where the line crosses the [tex]\(y\)[/tex]-axis, which means [tex]\(x = 0\)[/tex].
2. Substitute [tex]\(x = 0\)[/tex] into the equation [tex]\(2x - 5y = 20\)[/tex]:
[tex]\[ 2(0) - 5y = 20 \][/tex]
3. Simplify the equation:
[tex]\[ -5y = 20 \][/tex]
4. Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{20}{-5} = -4 \][/tex]
5. Therefore, the [tex]\(y\)[/tex]-intercept is [tex]\((0, -4)\)[/tex].

So, the correct identification of the intercepts is:

- The [tex]\(x\)[/tex]-intercept is [tex]\((10, 0)\)[/tex]
- The [tex]\(y\)[/tex]-intercept is [tex]\((0, -4)\)[/tex]

Thus, the first statement is correct:
- The [tex]\(x\)[/tex]-intercept is [tex]\((10,0)\)[/tex] and the [tex]\(y\)[/tex]-intercept is [tex]\((0,-4)\)[/tex].