Select the correct answer.

What is the solution to this equation?

[tex]\[ \left(\frac{1}{27}\right)^{2-x}=9^{3 x} \][/tex]

A. -2

B. 0

C. [tex]\(-\frac{6}{7}\)[/tex]

D. [tex]\(-\frac{3}{7}\)[/tex]



Answer :

To solve the equation [tex]\(\left(\frac{1}{27}\right)^{2-x}=9^{3 x}\)[/tex], let’s follow these steps:

1. Rewrite the bases in terms of powers of 3:
[tex]\[ \frac{1}{27} = \left(\frac{1}{3^3}\right) = 3^{-3} \][/tex]
[tex]\[ 9 = 3^2 \][/tex]

2. Substitute these rewritten bases into the equation:
[tex]\[ \left(3^{-3}\right)^{2-x} = \left(3^2\right)^{3x} \][/tex]

3. Simplify the exponents:
When raising a power to another power, you multiply the exponents:
[tex]\[ 3^{-3(2-x)} = 3^{2 \cdot 3x} \][/tex]
[tex]\[ 3^{-6 + 3x} = 3^{6x} \][/tex]

4. Since the bases are the same, set the exponents equal to each other:
[tex]\[ -6 + 3x = 6x \][/tex]

5. Solve for [tex]\(x\)[/tex]:
[tex]\[ -6 + 3x = 6x \][/tex]
[tex]\[ -6 = 6x - 3x \][/tex]
[tex]\[ -6 = 3x \][/tex]
[tex]\[ x = \frac{-6}{3} \][/tex]
[tex]\[ x = -2 \][/tex]

Therefore, the correct answer is:

A. -2