The product of a binomial and a trinomial is [tex]$x^3+3x^2-x+2x^2+6x-2$[/tex]. Which expression is equivalent to this product after it has been fully simplified?

A. [tex]$x^3 + 5x^2 + 5x - 2$[/tex]
B. [tex][tex]$x^3 + 2x^2 + 8x - 2$[/tex][/tex]
C. [tex]$x^3 + 11x^2 - 2$[/tex]
D. [tex]$x^3 + 10x^2 - 2$[/tex]



Answer :

To find the expression equivalent to the given product of a binomial and a trinomial [tex]\( x^3 + 3x^2 - x + 2x^2 + 6x - 2 \)[/tex], we need to combine the like terms in the polynomial.

1. Identify and combine the like terms:
- Cubic term ([tex]\( x^3 \)[/tex]): There is only one [tex]\( x^3 \)[/tex] term, which is [tex]\( x^3 \)[/tex].
- Quadratic terms ([tex]\( x^2 \)[/tex]): Combine the [tex]\( x^2 \)[/tex] terms:
[tex]\[ 3x^2 + 2x^2 = 5x^2 \][/tex]
- Linear terms ([tex]\( x \)[/tex]): Combine the [tex]\( x \)[/tex] terms:
[tex]\[ -x + 6x = 5x \][/tex]
- Constant term: There is only one constant term, which is [tex]\( -2 \)[/tex].

2. Write the simplified expression:
[tex]\[ x^3 + 5x^2 + 5x - 2 \][/tex]

Therefore, the expression equivalent to [tex]\( x^3 + 3x^2 - x + 2x^2 + 6x - 2 \)[/tex] after it has been fully simplified is:
[tex]\[ \boxed{x^3 + 5x^2 + 5x - 2} \][/tex]