Solve for [tex]\( x \)[/tex]:
[tex]\[ 3x = 6x - 2 \][/tex]

---

Solve for [tex]\( z \)[/tex]:

[tex]\[ \left|\frac{7z - 5}{5z + 2}\right| = 1 \][/tex]

If the answer is not an integer, enter it as a fraction. If there are multiple solutions, separate the answers with commas.

[tex]\[ z = \boxed{} \][/tex]



Answer :

To solve the equation

[tex]\[ \left|\frac{7z - 5}{5z + 2}\right| = 1, \][/tex]

we will break it down into two separate equations because the absolute value equation [tex]\( |A| = 1 \)[/tex] implies that either [tex]\( A = 1 \)[/tex] or [tex]\( A = -1 \)[/tex].

### Case 1: [tex]\(\frac{7z - 5}{5z + 2} = 1\)[/tex]

1. Set up the equation:

[tex]\[ \frac{7z - 5}{5z + 2} = 1 \][/tex]

2. Clear the fraction by multiplying both sides by [tex]\( 5z + 2 \)[/tex]:

[tex]\[ 7z - 5 = 5z + 2 \][/tex]

3. Move all terms involving [tex]\( z \)[/tex] to one side and constants to the other:

[tex]\[ 7z - 5z = 2 + 5 \][/tex]

[tex]\[ 2z = 7 \][/tex]

4. Solve for [tex]\( z \)[/tex]:

[tex]\[ z = \frac{7}{2} \][/tex]

### Case 2: [tex]\(\frac{7z - 5}{5z + 2} = -1\)[/tex]

1. Set up the equation:

[tex]\[ \frac{7z - 5}{5z + 2} = -1 \][/tex]

2. Clear the fraction by multiplying both sides by [tex]\( 5z + 2 \)[/tex]:

[tex]\[ 7z - 5 = - (5z + 2) \][/tex]

3. Distribute the negative sign on the right:

[tex]\[ 7z - 5 = -5z - 2 \][/tex]

4. Move all terms involving [tex]\( z \)[/tex] to one side and constants to the other:

[tex]\[ 7z + 5z = -2 + 5 \][/tex]

[tex]\[ 12z = 3 \][/tex]

5. Solve for [tex]\( z \)[/tex]:

[tex]\[ z = \frac{3}{12} = \frac{1}{4} \][/tex]

### Solutions:

The solutions to the original equation are:

[tex]\[ z = \frac{7}{2}, \frac{1}{4} \][/tex]

Thus, the final answer is:

[tex]\[ z = \frac{7}{2}, \frac{1}{4} \][/tex]