Answered

Calculate [tex]\( M + T \)[/tex].

Given:
[tex]\[ M = -8r^2 + 11r - 6 \][/tex]
[tex]\[ T = -7r^2 - 9r + 14 \][/tex]

Find the polynomial [tex]\( M + T \)[/tex] in standard form.



Answer :

To find the resulting polynomial when we add the polynomials [tex]\( M \)[/tex] and [tex]\( T \)[/tex] together, let's break down each step carefully.

Firstly, let's write down the given polynomials:

[tex]\[ M = -8r^2 + 11r - 6 \][/tex]

[tex]\[ T = -7r^2 - 9r + 14 \][/tex]

Next, we need to add these two polynomials together by combining like terms. Let's start by adding the coefficients of the [tex]\( r^2 \)[/tex], [tex]\( r \)[/tex], and constant terms separately.

1. Combining the [tex]\( r^2 \)[/tex] terms:
[tex]\[ -8r^2 + (-7r^2) = -15r^2 \][/tex]

2. Combining the [tex]\( r \)[/tex] terms:
[tex]\[ 11r + (-9r) = 2r \][/tex]

3. Combining the constant terms:
[tex]\[ -6 + 14 = 8 \][/tex]

Now, we combine all these results to form the new polynomial:

[tex]\[ M + T = -15r^2 + 2r + 8 \][/tex]

So, the polynomial in standard form is:

[tex]\[ \boxed{-15r^2 + 2r + 8} \][/tex]