On the unit circle, where [tex]0 \ \textless \ \theta \leq 2\pi[/tex], when is [tex]\tan \theta[/tex] undefined?

A. [tex]\theta = \pi[/tex] and [tex]\theta = 2\pi[/tex]

B. [tex]\sin \theta = \cos \theta[/tex]

C. [tex]\theta = \frac{\pi}{2}[/tex] and [tex]\theta = \frac{3\pi}{2}[/tex]

D. [tex]\sin \theta = \frac{1}{\cos \theta}[/tex]



Answer :

To determine when [tex]\(\tan \theta\)[/tex] is undefined on the unit circle within the interval [tex]\(0 < \theta \leq 2\pi\)[/tex], we need to consider the definition of the tangent function in terms of sine and cosine:

[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]

The tangent function is undefined wherever the denominator [tex]\(\cos \theta\)[/tex] is zero, because division by zero is undefined. Therefore, we need to find the values of [tex]\(\theta\)[/tex] where [tex]\(\cos \theta = 0\)[/tex].

The cosine function is zero at specific points within one full cycle of the unit circle. These points occur at:

[tex]\[ \theta = \frac{\pi}{2} \quad \text{and} \quad \theta = \frac{3\pi}{2} \][/tex]

Thus, the values of [tex]\(\theta\)[/tex] at which [tex]\(\tan \theta\)[/tex] is undefined are:

[tex]\[ \theta = \frac{\pi}{2} \quad \text{and} \quad \theta = \frac{3\pi}{2} \][/tex]

Hence, the correct choice is:

[tex]\[ \theta = \frac{\pi}{2} \text{ and } \theta = \frac{3\pi}{2} \][/tex]