Select the correct answer.

Which expression is equivalent to the given expression?
[tex]\left(10 c^6 d^{-5}\right)\left(2 c^{-5} d^4\right)[/tex]

A. [tex]\frac{20 c}{d}[/tex]

B. [tex]20 c d[/tex]

C. [tex]\frac{20}{c^{30} d^{20}}[/tex]

D. [tex]20 c^{30} d^{20}[/tex]



Answer :

To find an equivalent expression for [tex]\(\left(10 c^6 d^{-5}\right)\left(2 c^{-5} d^4\right)\)[/tex], we need to combine the terms step-by-step:

1. Multiply the constants:

[tex]\[ 10 \times 2 = 20 \][/tex]

2. Combine the exponents for [tex]\(c\)[/tex]:

For [tex]\(c\)[/tex], we use the property of exponents [tex]\((a^m \cdot a^n = a^{m+n})\)[/tex].

[tex]\[ c^6 \times c^{-5} = c^{6 + (-5)} = c^1 = c \][/tex]

3. Combine the exponents for [tex]\(d\)[/tex]:

For [tex]\(d\)[/tex], we again use the property of exponents [tex]\((a^m \cdot a^n = a^{m+n})\)[/tex].

[tex]\[ d^{-5} \times d^4 = d^{-5 + 4} = d^{-1} \][/tex]

4. Simplify the expression:

Combining all these, we get

[tex]\[ 20 c d^{-1} = \frac{20c}{d} \][/tex]

Therefore, the equivalent expression is [tex]\(\boxed{\frac{20 c}{d}}\)[/tex].

Hence, the correct answer is:

A. [tex]\(\frac{20 c}{d}\)[/tex]