Answer :
Let's solve the problem step by step by performing the given polynomial subtractions.
Given polynomials:
1. [tex]\(7x^2 + x + 9\)[/tex]
2. [tex]\(3x^2 + 4x - 5\)[/tex]
3. [tex]\(4x^2 - 3x\)[/tex]
Step 1: Subtract the second polynomial from the first polynomial.
We need to subtract [tex]\(3x^2 + 4x - 5\)[/tex] from [tex]\(7x^2 + x + 9\)[/tex]:
[tex]\[ (7x^2 + x + 9) - (3x^2 + 4x - 5) \][/tex]
Distribute the negative sign and combine like terms:
[tex]\[ 7x^2 + x + 9 - 3x^2 - 4x + 5 \][/tex]
Combine like terms:
[tex]\[ (7x^2 - 3x^2) + (x - 4x) + (9 + 5) \][/tex]
[tex]\[ 4x^2 - 3x + 14 \][/tex]
So, the result of the first subtraction is:
[tex]\[ 4x^2 - 3x + 14 \][/tex]
Step 2: Subtract the third polynomial from the result of the first subtraction.
Next, we need to subtract [tex]\(4x^2 - 3x\)[/tex] from [tex]\(4x^2 - 3x + 14\)[/tex]:
[tex]\[ (4x^2 - 3x + 14) - (4x^2 - 3x) \][/tex]
Distribute the negative sign and combine like terms:
[tex]\[ 4x^2 - 3x + 14 - 4x^2 + 3x \][/tex]
Combine like terms:
[tex]\[ (4x^2 - 4x^2) + (-3x + 3x) + 14 \][/tex]
[tex]\[ 0 + 0 + 14 \][/tex]
[tex]\[ 14 \][/tex]
So, after performing both subtractions, the final result is:
[tex]\[ \boxed{14} \][/tex]
Given polynomials:
1. [tex]\(7x^2 + x + 9\)[/tex]
2. [tex]\(3x^2 + 4x - 5\)[/tex]
3. [tex]\(4x^2 - 3x\)[/tex]
Step 1: Subtract the second polynomial from the first polynomial.
We need to subtract [tex]\(3x^2 + 4x - 5\)[/tex] from [tex]\(7x^2 + x + 9\)[/tex]:
[tex]\[ (7x^2 + x + 9) - (3x^2 + 4x - 5) \][/tex]
Distribute the negative sign and combine like terms:
[tex]\[ 7x^2 + x + 9 - 3x^2 - 4x + 5 \][/tex]
Combine like terms:
[tex]\[ (7x^2 - 3x^2) + (x - 4x) + (9 + 5) \][/tex]
[tex]\[ 4x^2 - 3x + 14 \][/tex]
So, the result of the first subtraction is:
[tex]\[ 4x^2 - 3x + 14 \][/tex]
Step 2: Subtract the third polynomial from the result of the first subtraction.
Next, we need to subtract [tex]\(4x^2 - 3x\)[/tex] from [tex]\(4x^2 - 3x + 14\)[/tex]:
[tex]\[ (4x^2 - 3x + 14) - (4x^2 - 3x) \][/tex]
Distribute the negative sign and combine like terms:
[tex]\[ 4x^2 - 3x + 14 - 4x^2 + 3x \][/tex]
Combine like terms:
[tex]\[ (4x^2 - 4x^2) + (-3x + 3x) + 14 \][/tex]
[tex]\[ 0 + 0 + 14 \][/tex]
[tex]\[ 14 \][/tex]
So, after performing both subtractions, the final result is:
[tex]\[ \boxed{14} \][/tex]