Answer :

To evaluate the expression [tex]\(\frac{17.2^2 \times 4.93}{\sqrt[3]{6750000}}\)[/tex] using logarithms, we can break it down into a series of steps. Here is a detailed, step-by-step solution:

1. Identify the components of the expression:

The given expression is:
[tex]\[ \frac{17.2^2 \times 4.93}{\sqrt[3]{6750000}} \][/tex]

2. Use logarithms to simplify the expression:

We know that using logarithm properties can help simplify the calculations. Recall the properties:
[tex]\[ \log(a^b) = b \log(a) \][/tex]
and
[tex]\[ \log\left(\frac{a \cdot b}{c}\right) = \log(a) + \log(b) - \log(c) \][/tex]

3. Break down the expression using logarithms:

Let:
[tex]\[ a = 17.2, \quad b = 4.93, \quad c = 6750000, \quad \text{and} \quad d = \frac{1}{3} \][/tex]

We need to find:
[tex]\[ \log\left(\frac{17.2^2 \times 4.93}{6750000^{1/3}}\right) \][/tex]

Using the properties of logarithms:
[tex]\[ \log\left(17.2^2 \times 4.93\right) = \log(17.2^2) + \log(4.93) \][/tex]
So,
[tex]\[ \log(17.2^2) = 2 \log(17.2) \][/tex]

Now we rewrite the logarithm of the denominator using the property of exponents:
[tex]\[ \log(6750000^{1/3}) = \frac{1}{3} \log(6750000) \][/tex]

4. Calculate individual logarithms using values:

From the logarithm tables or given data:
[tex]\[ \log(17.2) = 1.235528446907549 \][/tex]
[tex]\[ \log(4.93) = 0.69284691927723 \][/tex]
[tex]\[ \log(6750000) = 6.829303772831025 \][/tex]

Therefore:
[tex]\[ 2 \log(17.2) = 2 \times 1.235528446907549 = 2.471056893815098 \][/tex]
[tex]\[ \frac{1}{3} \log(6750000) = \frac{1}{3} \times 6.829303772831025 = 2.276434590943675 \][/tex]

5. Combine the logarithmic terms:

Now, put these values into the expression:
[tex]\[ \log\left(\frac{17.2^2 \times 4.93}{6750000^{1/3}}\right) = 2.471056893815098 + 0.69284691927723 - 2.276434590943675 \][/tex]
Simplify the right side:
[tex]\[ 2.471056893815098 + 0.69284691927723 - 2.276434590943675 = 0.8874692221486531 \][/tex]

6. Convert back from logarithms to find the result:

To find the final result, convert [tex]\(\log(x) = 0.8874692221486531\)[/tex] back to [tex]\(x\)[/tex]:
[tex]\[ x = 10^{0.8874692221486531} \][/tex]
Therefore:
[tex]\[ x \approx 7.7173682172212095 \][/tex]

Hence, the value of [tex]\(\frac{17.2^2 \times 4.93}{\sqrt[3]{6750000}}\)[/tex] evaluates to approximately [tex]\(7.7173682172212095\)[/tex].