Let [tex]|r| = 6[/tex] at an angle of [tex]30^{\circ}[/tex] and [tex]|s| = 11[/tex] at an angle of [tex]225^{\circ}[/tex]. Which expression represents [tex]|r - s|[/tex]?

A. [tex]\sqrt{6^2 + 11^2 - 2(6)(11) \cos \left(15^{\circ}\right)}[/tex]
B. [tex]\sqrt{6^2 + 11^2 - 2(6)(11) \cos \left(45^{\circ}\right)}[/tex]
C. [tex]\sqrt{6^2 + 11^2 - 2(6)(11) \cos \left(165^{\circ}\right)}[/tex]
D. [tex]\sqrt{6^2 + 11^2 - 2(6)(11) \cos \left(255^{\circ}\right)}[/tex]



Answer :

To determine the expression that represents [tex]\(|r - s|\)[/tex], we use the Law of Cosines for vectors. Given the magnitudes and angles of vectors [tex]\(r\)[/tex] and [tex]\(s\)[/tex]:

- The magnitude of [tex]\(r\)[/tex] is 6 and its angle from the positive x-axis is [tex]\(30^\circ\)[/tex].
- The magnitude of [tex]\(s\)[/tex] is 11 and its angle from the positive x-axis is [tex]\(225^\circ\)[/tex].

We'll follow these steps:

1. Calculate the angle difference between [tex]\(r\)[/tex] and [tex]\(s\)[/tex]:

The angles are [tex]\(30^\circ\)[/tex] and [tex]\(225^\circ\)[/tex], respectively. To find the angle difference, we compute:

[tex]\[ |30^\circ - 225^\circ| = | -195^\circ | = 195^\circ \][/tex]

2. Apply the Law of Cosines:

The Law of Cosines in the context of vectors states that:

[tex]\[ |r - s| = \sqrt{ r^2 + s^2 - 2 \cdot r \cdot s \cdot \cos(\theta) } \][/tex]

Here, [tex]\(r = 6\)[/tex], [tex]\(s = 11\)[/tex], and [tex]\(\theta\)[/tex] is the angle difference calculated, which is [tex]\(195^\circ\)[/tex]. Thus, we substitute:

[tex]\[ |r - s| = \sqrt{ 6^2 + 11^2 - 2 \cdot 6 \cdot 11 \cdot \cos(195^\circ) } \][/tex]

Reviewing the given potential answers, the correct choice must be:

[tex]\[ \sqrt{6^2 + 11^2 - 2 \cdot 6 \cdot 11 \cos(195^\circ)} \][/tex]

So the expression among the choices given that represents [tex]\(|r - s|\)[/tex] is:

[tex]\[ \sqrt{ 6^2 + 11^2 - 2 \cdot 6 \cdot 11 \cdot \cos(195^\circ) } \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{\sqrt{6^2+11^2-2(6)(11) \cos \left(165^{\circ}\right)}} \][/tex]