Given that [tex]$f(x)=\frac{x^2-3}{2}$[/tex],

a) Find [tex]$f(3)$[/tex]

b) Find [tex][tex]$f^{-1}(x)$[/tex][/tex]

c) Find [tex]$f^{-1}(11)$[/tex]

Note: For part c), separate your 2 answers with a comma (e.g., -2, 2).



Answer :

Certainly! Let's tackle each part of this problem one step at a time.

### Part a) Find [tex]\( f(3) \)[/tex]

Given the function:
[tex]\[ f(x) = \frac{x^2 - 3}{2} \][/tex]

To find [tex]\( f(3) \)[/tex], substitute [tex]\( x = 3 \)[/tex] into the function:
[tex]\[ f(3) = \frac{3^2 - 3}{2} \][/tex]
[tex]\[ f(3) = \frac{9 - 3}{2} \][/tex]
[tex]\[ f(3) = \frac{6}{2} \][/tex]
[tex]\[ f(3) = 3 \][/tex]

So, [tex]\( f(3) = 3 \)[/tex].

### Part b) Find [tex]\( f^{-1}(x) \)[/tex]

To find the inverse function [tex]\( f^{-1}(x) \)[/tex], we start with the equation for [tex]\( f(x) \)[/tex] and solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex].

Start with:
[tex]\[ y = f(x) = \frac{x^2 - 3}{2} \][/tex]

Rearrange the equation to solve for [tex]\( x \)[/tex]:
[tex]\[ y = \frac{x^2 - 3}{2} \][/tex]
[tex]\[ 2y = x^2 - 3 \][/tex]
[tex]\[ x^2 = 2y + 3 \][/tex]
[tex]\[ x = \pm \sqrt{2y + 3} \][/tex]

So, the inverse function [tex]\( f^{-1}(x) \)[/tex] can be written as:
[tex]\[ f^{-1}(x) = \pm \sqrt{2x + 3} \][/tex]

### Part c) Find [tex]\( f^{-1}(11) \)[/tex]

Using the inverse function [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \pm \sqrt{2x + 3} \][/tex]

Substitute [tex]\( x = 11 \)[/tex] into the inverse function:
[tex]\[ f^{-1}(11) = \pm \sqrt{2 \cdot 11 + 3} \][/tex]
[tex]\[ f^{-1}(11) = \pm \sqrt{22 + 3} \][/tex]
[tex]\[ f^{-1}(11) = \pm \sqrt{25} \][/tex]
[tex]\[ f^{-1}(11) = \pm 5 \][/tex]

Therefore, the solutions are:
[tex]\[ f^{-1}(11) = -5, 5 \][/tex]

### Summary

- a) [tex]\( f(3) = 3 \)[/tex]
- b) [tex]\( f^{-1}(x) = \pm \sqrt{2x + 3} \)[/tex]
- c) [tex]\( f^{-1}(11) = -5, 5 \)[/tex]