Answered

If the volume of a gas at [tex]$0{ }^{\circ} C$[/tex] is [tex]$V_0$[/tex], then the volume of the gas at [tex]-1^{\circ} C[/tex] at constant pressure will be:

(a) [tex]\left(V_0+\frac{V_0}{273}\right) \, \text{ml}[/tex]
(b) [tex]\left(V_0+\frac{272 V_0}{273}\right) \, \text{ml}[/tex]
(c) [tex]\left(V_0-\frac{V_0}{273}\right) \, \text{ml}[/tex]
(d) [tex]\left(\frac{V_0}{273}-V_0\right) \, \text{ml}[/tex]



Answer :

Certainly! Let's solve this problem step-by-step:

### Given:
- The volume of a gas at [tex]\(0{ }^{\circ} C\)[/tex] (273.15 K) is [tex]\(V_0\)[/tex].
- We need to determine the volume of the gas at [tex]\(-1{ }^{\circ} C\)[/tex] (272.15 K) maintaining constant pressure.

### Step-by-Step Solution:

1. Temperature Conversion:
The initial and final temperatures are:
[tex]\[ T_0 = 0{ }^{\circ} C = 273.15 \, \text{K} \][/tex]
[tex]\[ T_{-1} = -1{ }^{\circ} C = 272.15 \, \text{K} \][/tex]

2. Charles's Law Application:
Charles's Law states that the volume of a gas is directly proportional to its temperature (in Kelvin) when pressure is constant:
[tex]\[ \frac{V_0}{T_0} = \frac{V_{-1}}{T_{-1}} \][/tex]
Where:
[tex]\[ V_0 \quad \text{(Initial Volume at } T_0) \][/tex]
[tex]\[ V_{-1} \quad \text{(Final Volume at } T_{-1}) \][/tex]

3. Solving for [tex]\(V_{-1}\)[/tex]:
We rearrange the equation to solve for [tex]\(V_{-1}\)[/tex]:
[tex]\[ V_{-1} = V_0 \times \frac{T_{-1}}{T_0} \][/tex]
Substituting the temperatures:
[tex]\[ V_{-1} = V_0 \times \frac{272.15}{273.15} \][/tex]

4. Calculating the Volume:
By performing the calculation:
[tex]\[ V_{-1} \approx V_0 \times 0.996339 \][/tex]

5. Selecting the Correct Option:
Given the possible options:

- (a) [tex]\(\left(V_0 + \frac{V_0}{273}\right) \, \text{ml}\)[/tex]
- (b) [tex]\(\left(V_0 + \frac{272 V_0}{273}\right) \, \text{ml}\)[/tex]
- (c) [tex]\(\left(V_0 - \frac{V_0}{273}\right) \, \text{ml}\)[/tex]
- (d) [tex]\(\left(\frac{V_0}{273} - V_0\right) \, \text{ml}\)[/tex]

Let's compare these options with the calculated value.

Comparing with each step, we find that the correct option matching our calculation is:
[tex]\[ (c) \left(V_0 - \frac{V_0}{273}\right) \, \text{ml} \][/tex]

6. Verifying the Option:
Let's verify if the chosen option yields the correct value:
[tex]\[ \frac{V_0}{273} \approx 0.003663 \, V_0 \][/tex]
Thus,
[tex]\[ V_0 - \frac{V_0}{273} \approx V_0 \times (1 - 0.003663) = V_0 \times 0.996337 \][/tex]
This approximates very closely to our initial calculation of [tex]\(0.996339 \, V_0\)[/tex]. Therefore, the correct answer is indeed:

[tex]\[ \boxed{\left(V_0 - \frac{V_0}{273}\right) \, \text{ml}} \][/tex]

Thus, the answer is option (c).