21. Which one of the following is true about the functions [tex]$f(x)=\left(\frac{1}{3}\right)^x$[/tex] and [tex]$g(x)=\log _{\frac{1}{3}} x$[/tex]?

A. Domain of [tex][tex]$f(x)$[/tex][/tex] = Range of [tex]$g(x)$[/tex] = [tex]R[/tex].

B. Range of [tex]$f(x)$[/tex] = Domain of [tex][tex]$g(x)$[/tex][/tex] = [tex]R[/tex].

C. Domain of [tex]$g(x)$[/tex] = Range of [tex]$f(x)$[/tex] = [tex]R[/tex].

D. Range of [tex][tex]$g(x)$[/tex][/tex] = Domain of [tex]$f(x)$[/tex] = [tex]R^{+}[/tex].



Answer :

Let's analyze the functions [tex]\( f(x) = \left( \frac{1}{3} \right)^x \)[/tex] and [tex]\( g(x) = \log_{\frac{1}{3}} x \)[/tex] to determine which statement is true.

### Step 1: Identify the Domain and Range of [tex]\( f(x) \)[/tex]

For the function [tex]\( f(x) = \left( \frac{1}{3} \right)^x \)[/tex]:
- The domain of [tex]\( f(x) \)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex], since you can raise a positive number to any real power.
- The range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. This is because an exponential function with a positive base (but less than 1) will always produce positive values, but never zero or negative values.

### Step 2: Identify the Domain and Range of [tex]\( g(x) \)[/tex]

For the function [tex]\( g(x) = \log_{\frac{1}{3}} x \)[/tex]:
- The domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. This is because the logarithm is only defined for positive real numbers.
- The range of [tex]\( g(x) \)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex]. This is because the logarithm function (with any positive base not equal to 1) can produce any real number as an output.

### Step 3: Compare the Options

Let's evaluate each option based on our findings:

- Option A: Domain of [tex]\( f(x) \)[/tex] = Range of [tex]\( g(x) = \mathbb{R} \)[/tex]
- The domain of [tex]\( f(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex], and the range of [tex]\( g(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex]. So, this statement is true.

- Option B: Range of [tex]\( f(x) \)[/tex] = Domain of [tex]\( g(x) = \mathbb{R} \)[/tex]
- The range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex], and the domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. So, this statement is not true.

- Option C: Domain of [tex]\( g(x) \)[/tex] = Range of [tex]\( f(x) = \mathbb{R} \)[/tex]
- The domain of [tex]\( g(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex], and the range of [tex]\( f(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex]. So, this statement is not true.

- Option D: Range of [tex]\( g(x) \)[/tex] = Domain of [tex]\( f(x) = \mathbb{R}^+ \)[/tex]
- The range of [tex]\( g(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex], and the domain of [tex]\( f(x) \)[/tex] is [tex]\( \mathbb{R} \)[/tex]. So, this statement is not true.

Among all the options, Option A is correct.

Thus, the correct answer is:
[tex]\[ \boxed{21} \][/tex]