[tex]\[
T=\frac{n(n+1)}{2}
\][/tex]

(a) Find the value of [tex]\(T\)[/tex] when [tex]\(n=15\)[/tex].
[tex]\[
\text{Write your answer in the box below:} \ \square
\][/tex]

(b) Show a check of your answer.
[tex]\[
\text{Write your check in the box below.}
\][/tex]



Answer :

(a) Find the value of [tex]\( T \)[/tex] when [tex]\( n = 15 \)[/tex].

We start by plugging [tex]\( n = 15 \)[/tex] into the given formula for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{n(n+1)}{2} \][/tex]

Substituting [tex]\( n = 15 \)[/tex] into the equation:
[tex]\[ T = \frac{15 \cdot (15 + 1)}{2} \][/tex]

Next, simplify inside the parentheses:
[tex]\[ T = \frac{15 \cdot 16}{2} \][/tex]

Now, multiply 15 and 16:
[tex]\[ T = \frac{240}{2} \][/tex]

Finally, divide by 2:
[tex]\[ T = 120.0 \][/tex]

Write your answer in the box below:
[tex]\[ \boxed{120.0} \][/tex]

(b) Show a check of your answer.

To check our result, we will sum all integers from 1 to [tex]\( n \)[/tex] where [tex]\( n = 15 \)[/tex].

[tex]\[ \text{Sum} = 1 + 2 + 3 + \dots + 15 \][/tex]

We can list and add these numbers directly:
[tex]\[ \text{Sum} = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 \][/tex]

Performing the addition step-by-step:
[tex]\[ \begin{align*} (1 + 15) & = 16, \\ (2 + 14) & = 16, \\ (3 + 13) & = 16, \\ (4 + 12) & = 16, \\ (5 + 11) & = 16, \\ (6 + 10) & = 16, \\ (7 + 9) & = 16, \\ 8 & = 8. \end{align*} \][/tex]

Thus, we have seven 16s and one 8:
[tex]\[ 7 \times 16 + 8 = 112 + 8 = 120 \][/tex]

We verify that the sum also confirms:
[tex]\[ 120 \][/tex]

Write your check in the box below:
[tex]\[ \boxed{120} \][/tex]