Answer :
(a) Find the value of [tex]\( T \)[/tex] when [tex]\( n = 15 \)[/tex].
We start by plugging [tex]\( n = 15 \)[/tex] into the given formula for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{n(n+1)}{2} \][/tex]
Substituting [tex]\( n = 15 \)[/tex] into the equation:
[tex]\[ T = \frac{15 \cdot (15 + 1)}{2} \][/tex]
Next, simplify inside the parentheses:
[tex]\[ T = \frac{15 \cdot 16}{2} \][/tex]
Now, multiply 15 and 16:
[tex]\[ T = \frac{240}{2} \][/tex]
Finally, divide by 2:
[tex]\[ T = 120.0 \][/tex]
Write your answer in the box below:
[tex]\[ \boxed{120.0} \][/tex]
(b) Show a check of your answer.
To check our result, we will sum all integers from 1 to [tex]\( n \)[/tex] where [tex]\( n = 15 \)[/tex].
[tex]\[ \text{Sum} = 1 + 2 + 3 + \dots + 15 \][/tex]
We can list and add these numbers directly:
[tex]\[ \text{Sum} = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 \][/tex]
Performing the addition step-by-step:
[tex]\[ \begin{align*} (1 + 15) & = 16, \\ (2 + 14) & = 16, \\ (3 + 13) & = 16, \\ (4 + 12) & = 16, \\ (5 + 11) & = 16, \\ (6 + 10) & = 16, \\ (7 + 9) & = 16, \\ 8 & = 8. \end{align*} \][/tex]
Thus, we have seven 16s and one 8:
[tex]\[ 7 \times 16 + 8 = 112 + 8 = 120 \][/tex]
We verify that the sum also confirms:
[tex]\[ 120 \][/tex]
Write your check in the box below:
[tex]\[ \boxed{120} \][/tex]
We start by plugging [tex]\( n = 15 \)[/tex] into the given formula for [tex]\( T \)[/tex]:
[tex]\[ T = \frac{n(n+1)}{2} \][/tex]
Substituting [tex]\( n = 15 \)[/tex] into the equation:
[tex]\[ T = \frac{15 \cdot (15 + 1)}{2} \][/tex]
Next, simplify inside the parentheses:
[tex]\[ T = \frac{15 \cdot 16}{2} \][/tex]
Now, multiply 15 and 16:
[tex]\[ T = \frac{240}{2} \][/tex]
Finally, divide by 2:
[tex]\[ T = 120.0 \][/tex]
Write your answer in the box below:
[tex]\[ \boxed{120.0} \][/tex]
(b) Show a check of your answer.
To check our result, we will sum all integers from 1 to [tex]\( n \)[/tex] where [tex]\( n = 15 \)[/tex].
[tex]\[ \text{Sum} = 1 + 2 + 3 + \dots + 15 \][/tex]
We can list and add these numbers directly:
[tex]\[ \text{Sum} = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 \][/tex]
Performing the addition step-by-step:
[tex]\[ \begin{align*} (1 + 15) & = 16, \\ (2 + 14) & = 16, \\ (3 + 13) & = 16, \\ (4 + 12) & = 16, \\ (5 + 11) & = 16, \\ (6 + 10) & = 16, \\ (7 + 9) & = 16, \\ 8 & = 8. \end{align*} \][/tex]
Thus, we have seven 16s and one 8:
[tex]\[ 7 \times 16 + 8 = 112 + 8 = 120 \][/tex]
We verify that the sum also confirms:
[tex]\[ 120 \][/tex]
Write your check in the box below:
[tex]\[ \boxed{120} \][/tex]